
Software Review

Flexible, Free Software for Multilevel Multiple
Imputation: A Review of Blimp and jomo

Timothy Hayes

Florida International University

Multiple imputation is a popular method for addressing data that are

presumed to be missing at random. To obtain accurate results, one’s

imputation model must be congenial to (appropriate for) one’s intended

analysis model. This article reviews and demonstrates two recent software

packages, Blimp and jomo, to multiply impute data in a manner con-

genial with three prototypical multilevel modeling analyses: (1) a random

intercept model, (2) a random slope model, and (3) a cross-level interaction

model. Following these analysis examples, I review and discuss both soft-

ware packages.

Keywords: missing data; multiple imputation; multilevel modeling; statistical software

Multilevel modeling has become a popular, widely used statistical framework

for analyzing clustered data. Whether one’s analysis questions involve repeated

measurements nested within individuals or students nested within classrooms,

special care must be taken to properly treat the dependencies inherent in multi-

level data. When some participants fail to attend a longitudinal measurement

session or when students from certain classrooms are not present for the admin-

istration of a key assessment, missing data threaten to bias analysis results and

inflate standard errors at multiple levels of measurement unless proactive mea-

sures are taken to remediate these effects. To aid researchers facing such scenar-

ios, this article reviews and demonstrates two free software packages for

conducting multiple imputation (Little & Rubin, 2002) of multilevel data.

A key issue in multiple imputation is congeniality of the imputation and

analysis models (Meng, 1994). Simply stated, unless one’s imputation model

preserves all of the relevant features of one’s analysis model, the predicted values

(imputations) generated will ultimately inject bias into the imputed data rather

than alleviating it. Failing to take the multilevel structure of a target analysis into

account in one’s imputation model is tantamount to making predictions based on

a fixed effect (single level) regression, assuming zero variation at higher levels of

nesting (i.e., zero intraclass correlation; Enders, Mistler, & Keller, 2016). For this

reason, specialized imputation routines are needed which are congenial to anal-

yses involving multilevel, nested data structures.

Journal of Educational and Behavioral Statistics

Vol. XX, No. X, pp. 1–17

DOI: 10.3102/1076998619858624

Article reuse guidelines: sagepub.com/journals-permissions

© 2019 AERA. http://jebs.aera.net

1

https://orcid.org/0000-0001-7530-0241
https://orcid.org/0000-0001-7530-0241
https://doi.org/10.3102/1076998619858624
https://sagepub.com/journals-permissions
http://crossmark.crossref.org/dialog/?doi=10.3102%2F1076998619858624&domain=pdf&date_stamp=2019-06-27

In this article, I review two free software packages for multilevel multiple

imputation, providing code to demonstrate how each package generates imputa-

tions congenial to three prototypical multilevel analyses. Blimp (Enders, Keller,

& Levy, 2018) performs multilevel multiple imputation using a fully conditional

specification (FCS) imputation approach that fills in missing values on a

variable-by-variable basis by employing a series of univariate regressions

(Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001; van Buuren,

Brand, Groothuis-Oudshoorn, & Rubin, 2006). In contrast, the jomo package

(Quartagno & Carpenter, 2017) in R (R Core Team, 2013) performs multilevel

multiple imputation using a joint model approach (Carpenter & Kenward, 2013;

Schafer, 1997) that fills in missing values on several variables simultaneously

using a multivariate regression model.

Overview and Comparison of Blimp and jomo

Both Blimp and jomo have many positive features to recommend them.

Both programs provide state-of-the-art functionality for generating imputations

congenial to a wide range of common multilevel analyses, and the developers of

both programs have made them freely available for Mac, PC, and Linux. Indeed,

for these reasons, I routinely recommend both Blimp and jomo to researchers

interested in addressing multilevel missing data. Nonetheless, each option may

appeal to different subgroups of researchers, depending on their software pre-

ferences, background experience, and analytic needs. In this section, I provide an

overview of both software packages, comparing and contrasting key features and

suggesting which types of users may benefit from each.

Perhaps the biggest difference between the two packages is that Blimp is a

stand-alone multiple imputation program that may be freely downloaded at

http://www.appliedmissingdata.com/multilevel-imputation.html, whereas jomo
is a package designed to be installed and run in R (R Core Team, 2013). As such,

jomo may have a somewhat narrower appeal among researchers whose prefer-

ence is to perform both substantive analyses and missing data analyses in R,

whereas Blimp may garner broader appeal based on its ability to generate

multiply imputed data sets ready for analysis and pooling in a variety of several

software packages including, but not limited to, R (e.g., outputting imputed data

sets in either a stacked file format, ready for analysis in SPSS [IBM Corp, 2017]

or as a set of separate, individual data files and a list of their file paths ready for

analysis in Mplus [Muthén & Muthén, 2017]).

The divide in user-friendliness is only widened by the difference in software

documentation currently offered by the two imputation programs. The jomo
package incorporates a set of standard help files and function documentation

that should be familiar to R users (https://cran.r-project.org/web/packages/jomo/

jomo.pdf) but currently lacks a more organized manual or tutorial (though a

Journal of Statistical Software submission is currently being written, according

Flexible, Free Software for Multilevel Multiple Imputation

2

http://www.appliedmissingdata.com/multilevel-imputation.html
https://cran.r-project.org/web/packages/jomo/jomo.pdf
https://cran.r-project.org/web/packages/jomo/jomo.pdf

to a personal communication from developer Matteo Quartagno). Given some of

the specific nuances and idiosyncrasies in jomo’s code,1 the lack of a thorough

user’s guide or similar reference may prove an obstacle for inexperienced R
users. By contrast, the Blimp User’s Guide (available for download at http://

www.appliedmissingdata.com/blimpuserguide-5.pdf) is extremely readable and

thorough, and the program’s commands have a simple, straightforward, intuitive

style quite similar in feel to that of Mplus (Muthén & Muthén, 2017).

The remainder of this article is organized as follows. First, I introduce the

simulated data used in the subsequent software demonstrations. Next, I demon-

strate how to multiply impute data for random intercept, random slope, and

cross-level interaction models using Blimp before demonstrating these same

analyses using jomo. Following these demonstrations, I briefly show how to

analyze and pool multiply imputed data sets from both packages in R. Finally, I

conclude with a general discussion comparing the features and strengths of both

packages and providing recommendations for which users’ needs might best be

served by each program.

Simulated Data Used in Examples

The following equations depict three prototypical multilevel analyses, using

combined model notation from Raudenbush and Bryk (2002):

yij ¼ g00 þ g10xij þ g01wj þ u0j þ Eij; ð1Þ

yij ¼ g00 þ g10xij þ g01wj þ u0j þ u1jxij þ Eij; ð2Þ

yij ¼ g00 þ g10xij þ g01wj þ g11xijwj þ u0j þ u1jxij þ Eij; ð3Þ

where xij is a Level 1 predictor for person i in cluster j, wi is a cluster-level (Level

2) predictor, the g coefficients indicate fixed effect regression weights, the us

indicate Level 2 residuals, and the Es indicate person-specific Level 1 residuals.

Equation 1 depicts a random intercept model in which each cluster-specific

intercept (b0j in Raudenbush and Bryk’s Level 1 model notation) consists of a

fixed effect (average) intercept, g00, plus a Level 2 residual, u0j. Equation 2

depicts a model with both a random intercept and random slope. In this model,

the cluster-specific slope of x (b1j, in Level 1 model notation) is decomposed into

an average fixed effect slope,g10, and a cluster-specific Level 2 residual, u1j.

Finally, Equation 3 depicts a model with both a random slope and a cross-level

interaction.

To demonstrate Blimp and jomo in the context of each prototypical analysis

model, I simulated three data sets containing C ¼ 30 clusters with five observa-

tions per cluster, yielding a total N ¼ 5� 30 ¼ 150 cases (drawn from popula-

tion models corresponding to the three analysis models of interest). Table 1

describes the variables in each simulated data set. In brief, each data set con-

tained two Level 1 predictors, (x1 and x2), two level-2 predictors (w1 and w2), two

Hayes

3

http://www.appliedmissingdata.com/blimpuserguide-5.pdf
http://www.appliedmissingdata.com/blimpuserguide-5.pdf

auxiliary variables (cf. Collins, Schafer, & Kam, 2001) used to inject missing

data (a1: an auxiliary variable used to inject missing data on the Level 1 model

variables, and a2: an auxiliary variable used to inject missing data on Level 2

model variables), and a cluster-level identifier variable (clus). Additionally, to

facilitate comparison, each data set contained both complete data and missing

data versions of key model variables. Table 2 shows the percentage of missing

data on each key model variable in each simulated example data set. All three

simulated data sets, along with the corresponding Blimp and R scripts, can be

found in the online supplemental materials accompanying this article.

In the following two sections, I first demonstrate how to impute each analysis

model using Blimp. I then demonstrate how to impute each model using jomo.

TABLE 1.

Description of Simulated Variables

Variables Role in Analysis

clus Cluster identifier

x1 Level 1 substantive model predictor

x2 Additional Level 1 predictor

w1 Level 2 substantive model predictor

w2 Additional Level 2 predictor

y Outcome variable in each analysis

a1 Auxiliary variable used to inject missing data on x1

a2 Auxiliary variable used to inject missing data on w1

xm1
x1 with missing data

wm1
w1 with missing data

ym y with missing data

Note. Variables x1, w1, and y, as well as corresponding missing data variables xm1
, wm 1, and ym were

featured in each substantive analysis models of interest, whereas variables x2, w2, a1, and a2 were used

as auxiliary variables in the imputation models.

TABLE 2.

Percent Missing Data on Each Variable in the Simulated Data Examples

Variables

Simulated Data Set, by Analysis Model

Random Intercept (%) Random Slope (%) Cross-Level Interaction (%)

xm1
15 16 31

wm1
17 17 13

xm1
� wm1

— — 42

ym 13 17 —

Note. Percentages vary on the same variable because each analysis example utilized a different

simulated data set.

Flexible, Free Software for Multilevel Multiple Imputation

4

Readers familiar with missing data analysis will recall that multiple imputation

proceeds in three phases: (1) an imputation phase, in which the imputation model

is specified and multiple copies of the data set are filled in by predicted values

from the model; (2) an analysis phase, in which the target statistical analysis of

interest is performed on all imputed data sets; and (3) a pooling phase, in which

parameter estimates and standard errors from the analyses are aggregated across

the imputed data sets using specialized formulas (Little & Rubin, 2002). Because

both Blimp and jomo are programs for generating multiply imputed data sets to

be analyzed and pooled using other software, the initial demonstrations of each

package focus exclusively on correctly specifying and executing the imputation

model in order to generate imputations congenial to the multilevel models of

Equations 1 through 3. Although I assume readers have some familiarity with

analyzing and pooling multiply imputed data using their software package of

choice, I later provide a brief demonstration of how to analyze and pool the

multiply imputed multilevel data sets using the mitml package in R (Grund,

Robitzsch, & Luedtke, 2017).

Conducting Multiple Imputation Using Blimp

To multiply impute a data set using Blimp, one must first write a Blimp
script, save it with a .imp file extension, and then run the script in order to generate

the imputations. Although Blimp may conveniently be used from the terminal

command line, for the majority users these steps can most easily be accomplished

via Blimp’s graphical user interface (GUI). Upon opening Blimp, a blank syntax

editor window automatically appears. To introduce the Blimp interface and its

syntax conventions, Figure 1 displays a screenshot of a Blimp syntax file, with

syntax corresponding to the random intercept model described in the previous

section. Like R, comments in Blimp are preceded by the number (pound) sign,

#. In the example syntax in Figure 1, comments throughout the script explain the

main syntax conventions. For a comprehensive discussion of Blimp’s syntax,

consult the User’s Guide. In the discussion that follows, I focus primarily on the

specification of the imputation model using the MODEL: command, drawing only

limited attention to other commands.

The MODEL: command specifies the imputation model. For multilevel impu-

tation, the model syntax takes the form

cluster identifier(s) * imputation model variables;

For single-level imputation, one would simply omit the cluster identifier(s)

on the left-hand side of the tilde (*). Blimp automatically detects the level at

which each variable is measured as well as whether the variable contains

missing data. In the present example, ym, xm1, and wm1 contain missing data.

Variables x2, w2, a1, and a2 are included as additional predictors in the

imputation model.

Hayes

5

The NIMPS: command indicates the number of imputed data sets to save

(20, in the present example). The OPTIONS: stacked command indicates

that the imputations are to be saved in a single file, stacked vertically (each data

set saved on top of each other in the CSV spreadsheet). This format can be

conveniently read into R (or SPSS) and subsequently analyzed and pooled (e.g.,

using the mitml package, as demonstrated in below). Conveniently, the

stacked key word can be replaced with the separate key word, which

saves each imputed data set as a separate file, along with a file list indicating the

file paths to each imputed data file. This output format is ideal for analyzing

and pooling the imputed data sets in Mplus (Muthén & Muthén, 2017), which

requires a file list as input, specifying directory paths to separately saved

imputed data files. Details of the remaining commands can be found in the

Blimp User’s Guide.

The .imp script above can easily be run from the Blimp GUI by clicking Run

under the Impute drop-down menu. Importantly, after the imputed data sets are

successfully saved, Blimp prints the following message, indicating the order of

the variables in the imputed data file:

VARIABLE ORDER IN SAVED DATA:
imp# clus a1 a2 y x1 x2 w1 w2 ym xm1 xm2 wm1 wm2

Since Blimp outputs files without column names (with no header), this

information will be crucial to have on hand when reading the imputed data file

into R or another statistical package (see online supplemental files for compre-

hensive syntax).

FIGURE 1. Blimp syntax editor, displayed on Mac, with syntax for random intercept

analysis.

Flexible, Free Software for Multilevel Multiple Imputation

6

For multilevel analyses with random intercepts but no random slopes or cross-

level interactions, the syntax displayed in Figure 1 is sufficient. This model

syntax invokes an FCS imputation algorithm that fills in the missing value on

each variable on the right-hand side of the tilde in the model command one at a

time via a series of univariate regressions (Enders et al., 2016, 2018; van Buuren,

2007; van Buuren et al., 2006).

In the absence of random coefficients or cross-level interactions, all variables

may be imputed in the same manner regardless of their roles as predictors or

outcomes in the eventual substantive analysis of interest. When a target analysis

features a random slope or cross-level interaction, however, the imputation pro-

cedure must be amended to account for the distributional complexity implied by

the model. As an example, take the random slope model from Equation (2).

When data are missing on both the outcome, ym, and the predictor with a random

slope, xm1
, standard FCS imputation assuming normally distributed Level 1 and

Level 2 residuals will produce biased results (Enders, Du, & Keller, 2017, 2019;

Enders, Hayes, & Du, 2019).

Although the computational details are beyond the scope of this software

review, the solution to this problem is to switch from standard FCS imputa-

tion to an extension called substantive model compatible FCS imputation

(SMC-FSC imputation; cf. Bartlett, Seaman, White, & Carpenter, 2015, also

termed fully Bayesian imputation by Enders, Du, et al., 2019). The basic

conceit of SMC-FCS is to selectively choose imputations that have a high

joint likelihood of being produced by both (a) the substantive analysis model

predicting the outcome, ym, and (b) a multilevel regression model in which

all other predictor variables (but not the outcome, ym) are used to impute xm1
.

For this reason, whereas traditional FCS imputation treats each variable to be

imputed as the outcome in its own (multilevel) regression with no particular

need to treat ym any differently than any other variable to be imputed, the

joint likelihood used by SMC-FCS imputation requires the user to distinguish

between the outcome variable and the predictors in the eventual substantive

analysis model of interest.

The details of the SMC-FCS algorithm may be technical, but implementing it

in Blimp is straightforward. This is accomplished by adding two new pieces to

the syntax above. First, one must designate which variable serves as the sub-

stantive model outcome using the OUTCOME: command. Second, one may des-

ignate a random slope between a predictor and outcome by inserting a colon (:)

between them. For the random slope model from Equation 2, the MODEL: and

OUTCOME: syntax are

MODEL: clus * ym:xm1 wm1 a1 a2 x2 w2;
OUTCOME: ym;

where the OUTCOME: command specifies ym as the substantive model out-

come, and the notation ym:xm1 specifies a random slope between ym and xm1
.

Hayes

7

Note that a random slope can be construed as a form of interaction in which

the x-y slope is moderated by cluster. Viewed in this way, it comes as little

surprise that other types of interaction models, including the cross-level inter-

action model of Equation 3, suffer from similar distributional issues. In

Blimp, the same SMC-FCS methods that make random slope estimation pos-

sible can also be used to impute interactions and polynomial terms. Once again,

the outcome variable in one’s substantive model must be specified using the

OUTCOME: command. To specify an interaction between two variables, their

product may be indicated with an asterisk (*) between them on the MODEL:
line. For the cross-level interaction of Equation 3, the MODEL: and OUTCOME:
syntax are as follows:

MODEL: clus * y:xm1 xm1*wm1 a1 a2 x2 w2;
OUTCOME: y;

Note that, once again, the outcome variable, y, is indicated using the OUT-

COME: command. Additionally, the asterisk (*) is used to indicate the cross-

level interaction between variables xm1 (Level 1) and wm1 (Level 2). This

model also specifies a random slope between y and xm1, y:xm1.

Conducting Multiple Imputation Using jomo

In the jomo package, the jomo() and jomo.smc()functions are the

powerhouses for conducting multiple imputation. The jomo() function con-

ducts multilevel, joint model multiple imputation appropriate for random inter-

cept models that do not contain random slopes or cross-level interactions,

whereas the jomo.smc() function conducts multilevel, joint model multiple

imputation appropriate for more complex substantive models including random

coefficients and/or cross-level interactions. Although the syntax required differs

between the two functions, they share at least two common conventions: (1) In

both functions, users must distinguish between Level 1 and Level 2 variables in

the multilevel imputation model; and (2) in both functions, users must explicitly

indicate when regression intercepts are to be included in the imputation model. In

this section, I first demonstrate how to use the jomo() function to multiply

impute data for a random intercept model and then demonstrate how to use the

jomo.smc() function to multiply impute data for the random slope and cross-

level interaction models.

Recall the random intercept model from Equation 1. To multiply impute data

for a random intercept model using jomo, one must first load the jomo package

(e.g., by running library(jomo)) and then proceed in two steps: (1) first add

a vector of 1s to the data frame to be imputed if one wishes to include intercept

parameters in the imputation model and then, finally, (2) conduct the imputation

using the jomo() function:

#Create a vector of 1s to model the intercept.

Flexible, Free Software for Multilevel Multiple Imputation

8

#riData is the name of the data frame containing the data
for the random intercept model.

riData$icept <- 1 #this adds a column of 1s named icept

#multiply impute the data and save the list of imputed data
sets as an object named jomoImps

jomoImps <- jomo(Y ¼ riData[,c("xm1","ym")], Y2 ¼ riDa-
ta[,"wm1", drop ¼ F], X ¼ riData[,c("icept", "x2", "a1")],
X2 ¼ riData[,c("icept","a2", "w2")], clus ¼ riData$clus,
nimp ¼ 20)

Readers considering using jomo are advised to take special note that the first

line of uncommented code creates a variable named icept set equal to a vector

of 1s. Although easy to miss, if one examines the jomo() function help file

(e.g., by typing ?jomo into the R console) the documentation clearly describes

that a vector of 1s is necessary if one wishes to include intercepts in the imputa-

tion model. Since one nearly always does want to include, rather than omit,

intercept parameters, this is crucial code to be included in any jomo analysis.

After adding the icept variable to the riData data frame, the next step is

to multiply impute the data. The jomo() function is a wrapper that encompasses

the functionality of jomo’s main suite of imputation functions. The first two

arguments, Y and Y2, take as input data frames containing the Level 1 and the

Level 2 variables to be imputed, respectively. The third and fourth arguments, X
and X2, take as input data frames containing Level 1 predictor variables with

complete data and Level 2 predictor variables with complete data, respectively,

to be included as predictors in the imputation model. Note that the icept
variable is specified as a predictor at both Level 1 (in the X argument) and Level

2 (in the X2 argument) in the jomo() function, indicating that intercepts should

be modeled at both levels. The argument clus specifies the variable(s) that

indicate clusters in the multilevel data frame. Finally, the argument nimp spe-

cifies the number of imputations to be saved (here, nimp ¼ 20 specifies 20

imputed data sets).

The jomo() function outputs a data frame object containing the imputed

data sets. The data are saved in stacked format, with the $Imputation variable

indicating which observations in the data frame correspond to which imputed

data set. For example, if one has imputed 20 data sets, the unique values of the

$Imputation variable will range from 0 to 20, with 0 indicating rows corre-

sponding to the original data set with missing values, 1 indicating rows corre-

sponding to the first imputed data set, and so on.

The code above is sufficient for imputing random intercept models, but what

about random slopes and cross-level interactions? Recall that joint model impu-

tation methods fill in missing observations on multiple variables simultaneously

using a multivariate regression approach. A joint imputation model can be

Hayes

9

uncongenial to an analysis model if the assumed multivariate distribution (e.g.,

multivariate normal) does not match the true joint distribution of variables

implied by the analysis as is the case when there are random coefficients or

cross-level interactions.

To address this issue, jomo, like Blimp, has recently added functions allowing

users to conduct SMC Joint Model (SMC-JM) imputation (cf. Goldstein, Carpenter,

& Browne, 2014). Like the SMC-FCS method available in Blimp, SMC-JM

involves implementing an additional Markov-Chain Monte Carlo (MCMC) step

and choosing imputations with high joint likelihoods of being compatible with both

the substantive model for the outcome, y (including the random slope term), and a

model involving the predictors. A primary difference is that the jomo version

imputes the predictors simultaneously using joint model imputation methods.

To use the jomo.smc() function, one must provide five primary pieces

of information: (1) a formula for the substantive regression of interest, expli-

citly including the intercept if desired; (2) a data frame including both (a) the

variables indicated in the model formula and (b) any auxiliary variables to be

included in the imputation model; (3) a vector of 1s and 2s, designating

which columns of the data frame are Level 1 and Level 2 variables, respec-

tively; (4) the number of imputed data sets to be saved; and (5) the name of

the function to be used to analyze the substantive model (e.g., “lm,”

“lmer,” “glm,” “glmer”).

The code for SMC-JM imputation of the random slope model in jomo appears

below:

#Substantive Model Compatible (SMC) Method
jomoImpsSMC <- jomo.smc(ym * xm1 þ wm1 þ (1 þ xm1|clus),

data ¼ rsData[,c("clus","a1", "a2", "x2", "w2", "xm1",
"wm1","ym")], level ¼ c(2, 1, 2, 1, 2, 1, 2, 1), nimp ¼ 20,
model ¼ "lmer")

Here, the model being used is the lmer() function from the lme4 package

for linear mixed-effects modeling in R (Bates, Mächler, Bolker, & Walker,

2014). The first part of formula for the substantive model indicates that the

outcome, y, is to be regressed on variables xm1 and wm1. The final term, (1

þ xm1|clus), depicts the random effects. The 1 explicitly indicates that the

random intercept is to be modeled. The term xm1|clus indicates that xm1 will

have a random slope that varies by cluster. The data argument provides the data

frame object that includes all variables to be included in the imputation model

(model variables and additional auxiliary variables). As is often the case, not all

variables in the data set are to be included in the imputation model, so the code

subsets the rsData data frame (short for “random slope data set”) to include

only the variables of interest. The level argument specifies which columns of

this subsetted data frame are Level 1 versus Level 2 variables. Finally, the nimp
argument specifies that 20 imputed data sets are to be saved.

Flexible, Free Software for Multilevel Multiple Imputation

10

This same function can be used to impute substantive models that include

cross-level interactions. The code for using SMC-JM to multiply impute a data

set in a manner congenial to a substantive model featuring a random slope and

cross-level interaction is:

jomoImpsSMC <- jomo.smc(y * xm1 þ wm1 þ xm1*wm1 þ (1 þ
xm1|clus), data ¼ intData[,c("clus","a1", "a2", "x2",
"w2", "xm1", "wm1","y")], level ¼ c(2, 1, 2, 1, 2, 1, 2, 1),
nimp ¼ 20, model ¼ "lmer")

The primary difference between this code and the previous example is the

inclusion of the term xm1*wm1 in the model formula, indicating the pres-

ence of a cross-level interaction between Level 1 variable xm1 and Level 2

variable wm1.

Analyzing and Pooling Imputed Data Sets Using mitml

The mitml package (multiple imputation tools for multilevel data; Grund

et al., 2017) in R provides a suite of functions for analyzing and pooling the

results of multilevel, multiply imputed data sets, making it an extremely

useful adjunct to both jomo and Blimp. In both cases, the structure of the

mitml procedure follows the same basic steps. First, the analyst uses the

split() function to split the imputed, stacked data frame into a list object

containing one imputed data set per list element. Next, the resulting list is

converted to an mitml list (a list object with an mitml.list class des-

ignation that can be detected and uniquely acted upon by other functions)

using the as.mitml.list() function. The example code below accom-

plishes these steps simultaneously, demonstrated on the Blimp imputations

(syntax for jomo proceeds identically, as documented in the online supple-

mental R scripts):

#Convert to mitml list.
blimplist <- as.mitml.list(split(blimpImps, blimpImps$

Imputation))

#Analyze imputed datasets using lmer() function
blimpmodel <- with(blimplist, lmer(ym * xm1 þ wm1 þ

(1|clus)))

#Pool and display results.
blimpFit <-testEstimates(blimpmodel, var.comp ¼ T)
blimpFit #display results.

The next step involves using the with() function in conjunction with each

imputation list to perform the analysis of interest (here a random intercept anal-

ysis using lmer in the lme4 package) on each imputed data set (i.e., on the each

data frame saved in each element of the mitml list). Finally, the estimates and

Hayes

11

standard errors from each of the 20 imputed data sets are pooled using the tes-

tEstimates() function.

Table 3 presents coefficients and standard errors from jomo and Blimp for

all three analysis models, computed using this exact procedure in mitml, con-

trasted with analyses of each complete data set (with no missing data), and an

analysis using listwise deletion. Of particular note is the superior performance of

jomo and Blimp over listwise deletion in recovering the random intercept

variance in the first analysis, the random slope variance in the second analysis,

and the cross-level interaction term in the final analysis.

TABLE 3.

Coefficients and Standard Errors (SE) by Analysis and Missing Data Handling Method

Parameter

Complete Listwise jomo Blimp

Estimate SE Estimate SE Estimate SE Estimate SE

Random intercept model

Intercept 5.12 .14 5.10 .15 5.22 .15 5.24 .16

x1 slope 0.22 .08 0.21 .11 0.30 .10 0.32 .11

w1 slope 0.38 .13 0.40 .14 0.31 .15 0.31 .15

Intercept variance 0.41 — 0.32 — 0.41 — 0.43 —

Residual variance 0.89 — 0.91 — 0.98 — 0.97 —

Random slope model

Intercept 5.02 .11 5.08 .16 4.98 .14 5.01 .14

x1 slope 0.28 .09 0.33 .11 0.29 .10 0.31 .10

w1 slope 0.06 .08 0.09 .11 0.04 .11 0.02 .12

Intercept variance 0.19 — 0.30 — 0.35 — 0.29 —

Slope variance 0.08 — 0.08 — 0.10 — 0.07 —

Covariance 0.12 — 0.16 — 0.13 — 0.12 —

Residual variance 0.91 — 0.91 — 0.81 — 0.94 —

Cross-level interaction model

Intercept 5.10 .14 5.16 .17 5.05 .14 5.06 .14

x1 slope 0.45 .12 0.59 .16 0.59 .12 0.56 .14

w1 slope �0.30 .15 �0.51 .19 �0.38 .16 �0.38 .17

x1 � w1 slope 0.31 .11 0.24 .18 0.32 .13 0.33 .14

Intercept variance 0.23 — 0.22 — 0.23 — 0.25 —

Slope variance 0.17 — 0.29 — 0.20 — 0.25 —

Covariance 0.07 — 0.13 — 0.11 — 0.10 —

Residual variance 1.18 — 1.07 — 1.06 — 1.02 —

Note. For all multiple imputation analyses, the analysis and pooling phases were conducted using the

mitml package in conjunction with lme4.

Flexible, Free Software for Multilevel Multiple Imputation

12

General Discussion, Review, and Comparison of the Two Software Packages

The utility of a multilevel multiple imputation software package rests on its

ability to generate imputations that are congenial to the features of one’s sub-

stantive analysis of interest. Both Blimp and jomo perform well at imputing

data for use in all three prototypical analysis models considered here. Addition-

ally, both Blimp and jomo provide facilities for imputing Level 2 predictor

variables (wm1
in all example analyses) as well as categorical variables (though

not explicitly demonstrated here).

It is worth noting that although each analysis example in this article uses a

single, potentially idiosyncratic simulated data set, the pattern of results

demonstrated here generally mirror those of recent simulation studies compar-

ing these two imputation approaches using these exact software packages

(Enders, Du, et al., 2019; Enders, Hayes, et al., 2019). Because SMC-JM

methods have only recently been added in jomo, direct comparisons of these

approaches to Blimp’s SMC-FCS algorithm via simulation have not yet been

conducted. The simulated examples presented in this article suggest that sub-

stantive model compatible imputation is broadly helpful in accurately recover-

ing model parameter estimates, regardless of whether the SMC imputation is

conducted via the FCS or joint model framework. Conscientious users are

advised to keep up-to-date on the simulation work in this area, however, as

future studies may clarify the conditions under which each of these SMC

imputation frameworks might be preferable.

Although Blimp and jomo incorporate many of the same features, there are

some key differences in implementation worth mentioning. First, given the

inherent complexity of multilevel data structures, it is crucial to take proactive

steps to inspect the MCMC algorithm underlying an imputation model for proper

convergence. In Blimp, users may assess convergence by requesting the poten-

tial scale reduction factor (Gelman et al., 2014; Gelman & Rubin, 1992) on an

initial run of a given imputation model, examining the number of iterations

required for the statistic to drop below a cutoff value of 1.05. Alternatively, in

jomo, users may assess convergence by creating and visually inspecting trace

plots (line graphs) of the parameter estimates at each iteration of the MCMC

chain (Schafer & Olsen, 1998), examining how many iterations are required to

obtain adequate, representative coverage of the distribution of the parameter.

Here again, the commands required by jomo to extract the requisite parameter

estimates and construct the trace plots should prove quite easy for researchers

who are both knowledgeable of multiple imputation methodology and experi-

enced in using R but may prove more difficult for researchers with less experi-

ence in either area.

Second, although both Blimp and jomo are capable of imputing categorical

data, they differ in the procedures used for binary and ordinal outcomes. Whereas

Blimp uses a threshold-based latent probit approach, jomo imputes all

Hayes

13

categorical outcomes using a more richly parameterized nominal probit model

(cf. Asparouhov & Muthén, 2010a, 2010b; Carpenter & Kenward, 2013; Enders,

Hayes, et al., 2019; Wu, Jia, & Enders, 2015). Although either of these

approaches should produce accurate estimates, it is possible that the more com-

plex nominal imputation model may produce more identification and conver-

gence problems than the more parsimonious ordinal imputation approach.

Finally, it is worth mentioning that Blimp features a variety of other useful

options including built-in facilities for conducting Monte Carlo simulation stud-

ies and an option for generating group-specific imputations to address missing

data in multiple group Structural Equation Models.

Despite these differences, however, there are important areas in which the two

packages are comparable. Both Blimp and jomo are capable of accurately

imputing multilevel models featuring random intercepts, random slopes, and

cross-level interactions. Both packages are kept up-to-date, with new features

regularly added reflecting the latest advances in multiple imputation methodol-

ogy. Additionally, the developers of both packages (Craig Enders for Blimp and

Matteo Quartagno for jomo) have been consistently gracious and responsive to

e-mail inquiries requesting clarification of theoretical imputation details, algo-

rithm implementation, and general technical support during the writing of this

review, inspiring confidence that users of either program will be able to obtain

answers to technical questions that may arise.

As the foregoing discussion implies, the FCS and Joint Model imputation

methods utilized by Blimp and jomo, respectively, represent the two major

approaches to multiple imputation advocated in the literature. Currently, these

approaches are generally treated by users as interchangeable, but it is possible

that future research will shed light on the circumstances in which each method

should be preferred over the other. For this reason, it is useful for researchers to

have both options in their arsenal for addressing missing data.

At the present time, Blimp should appeal to researchers with a preference for

FCS imputation and those who wish to analyze and pool their imputations in any

of several software packages including R, SPSS, and Mplus. By contrast, jomo
should appeal to researchers with a preference for joint model imputation and

those who prefer to work exclusively in R, without the need to export data to a

separate stand-alone package and then reimport the imputed data sets (although it

should be noted that this procedure is extremely straightforward in Blimp).

To summarize, both Blimp and jomo provide state-of-the-art facilities for

generating imputations that are germane to any of the three prototypical analysis

models described above (random intercept, random slope, and cross-level inter-

action). I highly recommend both of these programs to researchers hoping to

address missing data in the context of their own multilevel analyses. It is my hope

that the discussion and examples provided in this review will help point sub-

stantive researchers toward the multiple imputation program most compatible

with their software preferences and analytic needs.

Flexible, Free Software for Multilevel Multiple Imputation

14

Acknowledgments

I sincerely thank Craig Enders and Matteo Quartagno for their responsiveness over e-mail

and for their general enthusiasm in answering detailed questions about Blimp and jomo,

respectively.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research,

authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publica-

tion of this article.

ORCID iD

Timothy Hayes https://orcid.org/0000-0001-7530-0241

Note

1. For example, the requirement of explicitly adding a vector of 1s to predictor

matrices or data frames in order to model, rather than omit, intercept para-

meters, as later demonstrated.

References

Asparouhov, T., & Muthén, B. (2010a). Bayesian analysis using Mplus. Retrieved from

http://www.statmodel.com/download/Bayes3.pdf

Asparouhov, T., & Muthén, B. (2010b). Multiple imputation with Mplus. Retrieved from

https://www.statmodel.com/download/Imputations7.pdf

Bartlett, J. W., Seaman, S. R., White, I. R., & Carpenter, J. R. (2015). Multiple imputation

of covariates by substantive-model compatible fully conditional specification. Statis-

tical Methods in Medical Research, 24, 462–487. doi:10.1177/0962280214521348

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects

models using lme4. Journal of Statistical Software, 67, 1–48. doi:10.18637/jss

.v067.i01

Carpenter, J. R., & Kenward, M. G. (2013). Multiple imputation and its application. West

Sussex, England: Wiley. doi:10.1002/9781119942283

Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and

restrictive strategies in modern missing data procedures. Psychological Methods, 6,

330–351. doi:10.1037/1082-989X.6.4.330

Enders, C. K., Du, H., & Keller, B. T. (2017). A fully Bayesian imputation procedure for

random coefficient models (and other pesky product terms). Paper presented at the

Society for Multivariate Experimental Psychology, Minneapolis, MN.

Enders, C. K., Du, H., & Keller, B. T. (2019). A model-based imputation procedure for

multilevel regression models with random coefficients, interaction effects, and non-

linear terms. Manuscript under Revision.

Enders, C. K., Hayes, T., & Du, H. (2019). A comparison of multilevel imputation

schemes for random coefficient models: Fully conditional specification and joint

Hayes

15

https://orcid.org/0000-0001-7530-0241
https://orcid.org/0000-0001-7530-0241
https://orcid.org/0000-0001-7530-0241
http://www.statmodel.com/download/Bayes3.pdf
https://www.statmodel.com/download/Imputations7.pdf

model imputation with random covariance matrices. Multivariate Behavioral

Research, 53, 695–713. doi:10.1080/00273171.2018.1477040

Enders, C. K., Keller, B. T., & Levy, R. (2018). A fully conditional specification approach

to multilevel imputation of categorical and continuous variables. Psychological Meth-

ods, 23, 298–317. doi:10.1037/met0000148

Enders, C. K., Mistler, S. A., & Keller, B. T. (2016). Multilevel multiple imputation: A

review and evaluation of joint modeling and chained equations imputation. Psycholo-

gical Methods, 21, 222–240. doi:10.1037/met0000063

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014).

Bayesian data analysis (3rd ed.). Boca Raton, FL: CRC Press.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple

sequences. Source: Statistical science (Vol. 7). Retrieved from https://doi.org/https://

www.jstor.org/stable/2246093

Goldstein, H., Carpenter, J. R., & Browne, W. J. (2014). Fitting multilevel multivariate

models with missing data in responses and covariates that may include interactions and

non-linear terms. Journal of the Royal Statistical Society. Series A., 177, 553–564. doi:

10.1111/rssa.12022

Grund, S., Robitzsch, A., & Luedtke, O. (2017). mitml: Tools for multiple imputation in

multilevel modeling. Retrieved from https://cran.r-project.org/package¼mitml

IBM Corp. (2017). IBM SPSS Statistics for Macintosh (Version 25.0). Armonk, NY:

Author.

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. Hoboken,

NJ: Wiley. doi:10.1002/9781119013563

Meng, X. (1994). Multiple-imputation inferences with uncongenial sources of input.

Statistical Science, 9, 538–558.

Muthén, L. K., & Muthén, B. (2017). Mplus user’s guide (8th ed.). Los Angeles, CA:

Author.

Quartagno, M., & Carpenter, J. (2017). jomo: A package for multilevel joint modelling

multiple imputation. Retrieved from https://cran.r-project.org/package¼jomo

R Core Team. (2013). R: A language and environment for statistical computing.

Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://

r-project.org/

Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J., & Solenberger, P. (2001). A

multivariate technique for multiply imputing missing values using a sequence of

regression models. Survey Methodology, 27, 85–95.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models (2nd ed.). Thousand

Oaks, CA: Sage.

Schafer, J. L. (1997). Analysis of incomplete multivariate data. New York, NY: Chapman

& Hall.

Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data

problems: A data analyst’s perspective. Multivariate Behavioral Research, 33, 545–

571. doi:10.1207/s15327906mbr3304_5

van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully

conditional specification. Statistical Methods in Medical Research, 16, 219–242.

doi:10.1177/0962280206074463

Flexible, Free Software for Multilevel Multiple Imputation

16

https://doi.org/https://www.jstor.org/stable/2246093
https://doi.org/https://www.jstor.org/stable/2246093
https://cran.r-project.org/package=mitml
https://cran.r-project.org/package=mitml
https://cran.r-project.org/package=jomo
https://cran.r-project.org/package=jomo
http://r-project.org/
http://r-project.org/

van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., & Rubin, D. B. (2006).

Fully conditional specification in multivariate imputation. Journal of Statistical Com-

putation and Simulation, 76, 1049–1064. doi:10.1080/10629360600810434

Wu, W., Jia, F., & Enders, C. (2015). A comparison of imputation strategies for ordinal

missing data on likert scale variables. Multivariate Behavioral Research, 50, 484–503.

doi:10.1080/00273171.2015.1022644

Author

TIMOTHY HAYES is an assistant professor of quantitative psychology at Florida Inter-

national University, 11200 SW 8th Street, DM Room 256, Miami, FL 33199, USA;

email: thayes@fiu.edu. His research interests broadly concern missing data, structural

equation models, multilevel models, and the intersection of the three. One line of

research focuses on evaluating and proposing novel methods for addressing missing

data in single-level and multilevel contexts. Another more recent line of work focuses

on extending factor score regression approaches to connected measurement models and

using factor score residuals to diagnose correlated uniquenesses.

Manuscript received February 8, 2018

Revision received March 14, 2019

Accepted May 29, 2019

Hayes

17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

