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Factor Score Regression in Connected Measurement Models Containing
Cross-Loadings
Timothy Hayesa and Satoshi Usamib

aFlorida International University; bUniversity of Tokyo

ABSTRACT
Factor Score Regression (FSR) methods have received increased interest in the quantitative literature, with
Croon’s bias-correctingmethod gaining particular traction. By fixing measurement parameters in place in an
initial step, FSR methods aim to stymie the proliferation of bias in larger structural models that may contain
misspecification. Although Croon’s approach was originally derived for factor models exhibiting simple
structure and conditionally independent unique factors, Hayes and Usami recently extended this method to
connected measurement models featuring correlated uniquenesses. In this article, we demonstrate that
their formulas also correct bias in models that feature cross-loadings. We begin by discussing bias in SEMs
that incorrectly impose simple structure. We then describe Croon’s approach in connected measurement
models featuring cross-loadings and compare its performance to two other state-of-the-art FSR approaches
both analytically and via a simulated demonstration.
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By incorporating both measurement and structural components,
Structural Equation Models (SEMs) allow researchers to obtain
error-free estimates of the true score, directed relationships among
latent constructs of theoretical interest. The power of the SEM
framework comes at a cost, however, since unbiased simultaneous
estimation hinges on the correct specification of every aspect of the
model. Although the risk of model misspecification can never be
eliminated, the extent of its damage can be reduced by switching
from a simultaneous to a multi-stage estimation approach such as
Factor Score Regression (FSR; Croon, 2002; Devlieger, Mayer, &
Rosseel, 2016;Devlieger&Rosseel, 2017;Hoshino&Bentler, 2013;
Lu, Kwan, Thomas, & Cedzynski, 2011; Skrondal & Laake, 2001).
In FSR, factor scores are extracted from each factor model in an
initial step and then used as input data in a subsequent regression
(or path analysis; seeDevlieger &Rosseel, 2017). By specifying and
extracting factor scores from each factor model separately, FSR
freezes the measurement model parameters at their initial esti-
mates, effectively blocking any parameter drift that would result
from misspecification elsewhere in the model.

Recent presentations of FSR methods (e.g., Devlieger et al.,
2016; Devlieger & Rosseel, 2017; Devlieger, Talloen, &
Rosseel, 2019; Lu et al., 2011) have focused on models in
which (a) all factors exhibit simple structure (Thurstone,
1935, 1947), with each indicator loading on only one factor,
and (b) all unique factors exhibit conditional independence.
When an SEM features a connected measurement model in
which the individual factor models are joined by either cross-
loading indicators or correlated unique factors, however, fac-
tor score extraction in step 1 of an FSR must proceed at the
level of the connected measurement model rather than the
individual factor models (cf. Hayes & Usami, 2020; Skrondal
& Laake, 2001).

In this article, we first utilize two template models to
illustrate the manner in which structural regression para-
meters may become biased in misspecified SEMs that ignore
cross-loadings and impose simple structure. We then compare
and contrast the performance of three cutting-edge FSR meth-
ods (Croon, 2002; Hayes & Usami, 2020; Hoshino & Bentler,
2013; Skrondal & Laake, 2001) in the context of connected
measurement models and present a focused demonstration of
the methods’ performance.

Bias in models assuming simple structure

Figure 1a,b presents two prototypical structural regression
models involving a connected measurement model consisting
of two latent factors with four primary indicators each, some
of which potentially exhibit cross-loadings (denoted by the
gray solid and dotted lines). Such a scenario could easily arise,
for example, if an eight-item questionnaire consists of two
4-item subscales, with certain items displaying nonzero cross-
loadings. Once the measurement model is estimated, a typical
researcher might be interested in ascertaining whether the
latent factors (e.g., subscales) are either predicted by or pre-
dictive of other construct(s) of interest. In line with this
reasoning, Figure 1a presents a model (Model A) in which
a third variable, W, is positioned as a common cause of latent
variables η1 and η2. Figure 1b presents an alternative model
(Model B) in which third variable W is positioned as
a common outcome of both factors.

In the following sections, we describe the bias that would
result in Models A and B if an analyst mistakenly imposed
a simple structure model when, in fact, some or all of the gray
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cross-loadings in Figure 1 are truly nonzero.1 To simplify the
algebraic exposition, we first describe the propagation of bias
in the models of Figure 1, in which a manifest third variable
predicts a connected measurement model comprised two
latent factors. Later, we demonstrate these same principles
in the context of the richer measurement model of Figure 2,
in which third variable W is a latent (rather than manifest)
variable measured by four indicators.

Bias in the estimated factor correlation
As stated by Asparouhov and Muthén (2009), “when nonzero
cross-loadings are specified as zero, the correlation between
factor indicators representing different factors is forced to go
through their main factors only, usually leading to overesti-
mated factor correlations and subsequent distorted structural
relations” (p. 398). Additionally, we note the magnification of
the estimated factor correlation, rη1η2 , will exert pressure to

(A) Model A (B) Model B

(C) Separate Factor Models Assuming Simple Structure (D) Connected Measurement Model with Cross-Loadings

Figure 1. (a) Model A: Connected measurement model with common predictor, W. (b) Model B: Connected measurement model with common outcome, W. (c)
Individual factor models assuming simple structure. (d) Connected measurement model featuring cross-loadings. Gray lines (both solid and dotted) indicate
potentially nonzero cross-loadings in the hypothetical population model used in our running example and simulation study. Solid lines are assumed nonzero in the
population in all models discussed. Dashed lines are assumed nonzero in the population in our discussion of measurement models in which both primary factors are
measured by indicators that cross-load.

Figure 2. Connected measurement model used in the simulated demonstrations, with all three factors latent. Dashed lines represent parameters that are nonzero
only in certain simulated conditions.

1Throughout these sections as well as the online supplemental appendices, we make the simplifying assumptions that the latent factor correlation and
structural regression coefficients involving third variable W are all positive and that all factor loadings, including cross-loadings, are positive (as would
occur, e.g., when an indicator of a latent “optimism” factor exhibits a positive cross-loading with a latent factor representing “life satisfaction”). In another
plausible case, the factor correlation could be negative, in which case the cross-loadings would likely be negative (e.g., a positively-loading indicator of
“optimism” cross-loads negatively on a latent “depression” factor). In such a case, the direction of parameter bias in each estimate may differ from what is
described here. We also note that the derivations that follow assume all latent factors are standardized with zero means and unit variances, but
analogous results should hold in measurement models that employ Unit Loading Identification (ULI) and unstandardized constructs.
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shrink the factor loadings corresponding to indicators that do
not cross-load. Take, for example, indicators Y1 and Y7 in the
models of Figure 1. The model implied covariance between
these indicators, derived, e.g.,, using covariance algebra
(Kenny, 1979) or path tracing rules (Wright, 1934), is
σY1Y7 ¼ λY1rη1η2λY7 , where λY1and λY7are factor loadings for
indicators Y1 and Y7 . It is clear from this equation that if the
middle term, rη1η2 , is magnified, one or both of the other
terms will necessarily need to be attenuated if the product is
to accurately reproduce the sample covariance between Y1

and Y7.

Bias in the structural regression coefficients and
disturbance covariance in common cause Model A
What would happen if an analyst imposed a simple structure
model for η1 and η2 when, in fact, some of the cross-loadings
(indicated by gray one-headed arrows) in Figure 1a were
actually nonzero in the population? Take as an example the
indicators of the first factor. If simple structure is imposed in
common cause Model A of Figure 1a, the model-implied
covariance between any indicator, Yi, of η1 and third variable
W will be σYiW ¼ λYiγ1, yielding an algebraic estimator of the
structural coefficient as γ1 ¼ σYiW=λYi . As noted above, the
factor loadings for indicators like Y1 that do not cross-load are
generally attenuated in models with omitted cross-loadings,
leading to magnified estimates of γ1 in the previous equation
due to division by a shrunken denominator.

Indicators such as Y3 or Y4 that actually cross-load in the
population also exert pressure to magnify the estimate of γ1,
but for different reasons. For indicators like Y3, the true
model-implied covariance with third variable W in the popu-
lation is a function of both the indicator’s relationship to η1,
through its primary loading, and its relationship to η2,
through its cross-loading (for precise formulas and algebra,
see the online supplemental appendices). Mirroring the logic
described by Asparouhov and Muthén (2009), the imposition
of a simple structure model forces the relationship between Y3

and third variable W to be channeled entirely through pri-
mary factor η1, resulting in pressure to magnify the estimate
of γ1 during estimation. Because in fully standardized models
a bivariate regression coefficient is equivalent to the bivariate
correlation between the predictor and outcome variables, say-
ing that the estimates of γ1 and γ2 are magnified is tanta-
mount to saying that the estimates of rη1W and rη2W are
magnified in simple structure models omitting truly nonzero
cross-loadings.

Finally, we note that in addition to the inflated structural
regression coefficients, the estimate of the disturbance covar-
iance between endogenous η1 and η2 in Model A should also
be magnified if the cross-loadings are left out of the model. If,
for example, the true disturbance covariance is 0 in the cor-
rectly specified model of Figure 1a, implying conditional
independence of the factors after their prediction by W, it
may be estimated as nonzero in a misspecified model impos-
ing simple structure. If the degree of magnification is large
enough, a model that correctly specifies zero disturbance cov-
ariance between η1 and η2 may exhibit significantly worse fit

(e.g., via a chi-square difference test) than one that incorrectly
estimates this disturbance covariance as a free parameter. In
this way, structural respecifications may seem to improve the
model when, in reality, they merely serve to mask the true
source of the misfit.

Bias in the structural regression coefficients in common
outcome Model B
What would happen if simple structure was mistakenly
imposed in Model B, in which third variable W is depicted
as a common outcome of η1 and η2? If η1, η2, and W are all
standardized and if, further, an estimate of the covariance
matrix of these variables is used as input in a path model
(as would be the case in an FSR analysis), γ1 and γ2 will be
estimated via the well-known formulas for standardized par-
tial regression coefficients with two predictors as:

γ1 ¼
rη1W � rη2Wrη1η2

1� r2η1η2
(1)

and

γ2 ¼
rη2W � rη1Wrη1η2

1� r2η1η2
(2)

respectively. Although we leave the algebraic details for the
online supplemental appendices, we note that the covariance
expectations (path tracings) that comprise the identities for γ1
and γ2 in a simultaneous SEM model actually reduce to
Equations (1) and (2) when the model is correctly specified.

As a first scenario, imagine that the gray lines, but not the
gray-dotted lines, in Figure 1b are nonzero in the population –
that is, that indicators Y3 and Y4 cross-load on η2 whereas none
of the indicators Y5–Y8 cross-load on η1 – but an analyst mis-
takenly fits a model assuming simple structure of both factors.
Because the factor model for η2 is correctly specified, the esti-
mate of rη2W should be fairly accurate but both of the other
correlations (rη1W and rη1η2 ) will be inflated. Because rη1W will be
magnified in the numerator of Equation (1) and because the
term rη2Wrη1η2 will not be comparably magnified when rη2W is
not also magnified, the numerator of Equation (1) will tend to be
inflated. Furthermore, because r2η1η2 will be larger than its true

value, the term 1� r2η1η2 will produce an attenuated denomina-

tor, increasing the tendency toward inflation of γ1. By contrast,
because the numerator of Equation (2) subtracts the product of
two inflated coefficients (rη1Wrη1η2 ) from a non-inflated one
(rη2W), γ2 should exhibit the reverse tendency: the numerator
of this coefficient should be attenuated when some indicators of
η1, but no indicators of η2, cross-load inModel B. If the degree of
attenuation in the numerator exceeds that in the denominator,
then γ2 will be attenuated overall.

As a second scenario, imagine that both the gray solid lines
and the gray-dotted lines are nonzero in the populationmodel of
Figure 1b – that is, indicators Y3 and Y4 cross-load on η2 and
indicators Y5 and Y6 cross-load on η1. In this case, the estimates
of all three correlations (rη1W , rη2W , and rη1η2 ) will be magnified.
All else being equal, the degree of magnification of the products
rη2Wrη1η2 and rη1Wrη1η2 on the right-hand side of the subtraction
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in the numerators of (1) and (2), respectively, will likely be
greater in absolute magnitude than the single correlations on
the left-hand side of the subtraction, with the result that the
numerators of both γ1 and γ2 will likely be attenuated in Model
B when the indicators of both factors cross-load. If the degree of
attenuation in each numerator exceeds that in the denominator,
then γ1 and γ2 will be attenuated overall.

FSR approaches for connected measurement models

As the preceding discussion implies, the structural parameters in
an SEM analysis quickly grow biased when researchers incorrectly
impose simple structure on measurement models that do not
adhere to it. Luckily, a variety of methods have been developed
to help researchers diagnose and estimate nonzero cross-loadings,
ranging from classical exploratory factor analysis (EFA; cf.Mulaik,
2009; Thurstone, 1935, 1947) to moremodern approaches such as
exploratory (Asparouhov &Muthén, 2009; Marsh, Morin, Parker,
& Kaur, 2014; Morin, Marsh, & Nagengast, 2013), Bayesian
(Asparouhov, Muthén, & Morin, 2015; Muthén & Asparouhov,
2012), or even regularized (Jacobucci, Grimm, & McArdle, 2016;
Scharf & Nestler, 2019) SEM. Because the exposition of these
methods is far beyond the focused scope of the present article,
we simply note that once researchers have identified nonzero
cross-loadings in a connected measurement model using which-
ever of these methods they prefer, they may wish to incorporate
these connectedmeasurement structures into FSR analyses. In this
section, we review simple structure and connected measurement
applications in three state of the art FSR methods: (1) the bias-
avoiding approach of Skrondal and Laake (2001), (2) Croon’s
(2002) bias-correcting approach, and (3) Hoshino and Bentler
(2013) method.

Skrondal and Laake’s (2001) bias-avoiding approach
Because factor scores are imperfect, indeterminate estimators
of their true population quantities (Steiger & Schönemann,
1978), coefficients from regressions or path analyses con-
ducted directly on extracted factor scores are prone to bias,
as demonstrated repeatedly in simulation studies (Devlieger
et al., 2016; Devlieger & Rosseel, 2017; Hayes & Usami, 2020;
Lu et al., 2011). Skrondal and Laake (2001) noted that this
bias might be avoided entirely if analysts strategically extract
factor scores using Bartlett estimation for all outcomes in
a given analysis (Bartlett, 1937) and regression estimation
for all predictors (Thurstone, 1935). As described in their
original paper, regression coefficients remain unbiased
whether factor scores are extracted on a factor-by-factor
basis under simple structure (termed “factorwise FSR” in
their paper2) or extracted from connected measurement
“blocks” of all predictors and all outcomes, respectively
(termed “blockwise factor score extraction” in their paper).

Thus, since its inception, the Skrondal-Laake (hereafter SL)
FSR method has been capable of handling connected mea-
surement models that may include cross-loadings or corre-
lated uniquenesses. An important caveat, however, is that for
the SL method to work, measurement models may only be

connected within blocks but not across blocks. That is, if there
are cross-loadings or correlated uniquenesses among the pre-
dictors (as in the model of Figure 1b) or among the outcomes
(as in Figure 1a) but no cross-loadings or unique factor
covariances across the predictor and outcome blocks, the SL
method of estimating the structural regression coefficients will
remain unbiased.

If there are cross-loadings between any predictors and
outcomes, however, the method breaks down. For example,
imagine that a researcher wished to regress η2 on η1 given any
of the models displayed in Figures 1 and 2. In such a scenario,
the SL method is undefined: it is impossible to use regression
estimation to extract factor scores for η1 and Bartlett estima-
tion to extract factor scores for η2 because the factor scores for
this connected measurement model must be extracted simul-
taneously. Similarly, when there are unique factor covariances
across the predictor and outcome blocks, the SL method will
no longer produce unbiased estimates of the structural regres-
sion coefficients (for a formal derivation, see Appendix A).

Croon’s (2002) bias-correcting approach
Rather than trying to avoid bias due to factor score indetermi-
nacy, Croon (2002) proposed to first extract factor scores for all
latent constructs using either Bartlett or regression estimation,
and then correct the systematic bias in the estimated variance-
covariance matrix of the factor scores analytically. Once
obtained, the bias-corrected variance-covariance matrix of the
predictors and outcome(s) can be used as input in either
a subsequent regression analysis (see Croon, 2002; Devlieger
et al., 2016) or path analysis (see Devlieger & Rosseel, 2017),
yielding consistent estimates of all model parameters.

Unlike Skrondal and Laake, Croon’s original work focused
exclusively on deriving bias-correction formulas in factor
models exhibiting simple structure (for bias correction for-
mulas in this standard case, see Croon, 2002; Devlieger et al.,
2016; Devlieger & Rosseel, 2017). Croon’s bias-correcting
approach is just as easily applied to connected measurement
models, however, as shown in a recent paper by Hayes and
Usami (2020). These authors used Croon’s approach to derive
bias-correction formulas for the variance-covariance matrix of
the latent variables in a connected measurement model.
Additionally, these authors derived bias correction formulas
for the covariances between factor scores extracted from
separate measurement models (for formulas, see Hayes &
Usami, 2020). The derivations and simulations in Hayes and
Usami’s paper focused exclusively on measurement models
connected by correlated uniquenesses but these same formu-
las may be equally well applied to connected measurement
models featuring nonzero cross-loadings.

For example, examine the three-factor measurement model
depicted in Figure 2. As an initial case, imagine that all unique
factors are conditionally independent (the two-headed arrows
depicted with dotted lines at the bottom of the figure are all zero
in the population). In such a case, Hayes and Usami's (2020)
formulas can be applied in either of two equivalent ways. One
option would be to estimate the full measurement model of the

2However, as shown by Skrondal and Laake (2001) the consistency of the factorwise procedure breaks down whenever the exogenous factors (estimated
with the regression method) exhibit nonzero correlations with each other, making the blockwise method a more generally applicable approach.
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three factors simultaneously and correct the entire variance-
covariance matrix with a single matrix formula (see Equation
(8) in Hayes & Usami, 2020). A second option would be to first
extract factor scores from the unconnected factor model for ηW
and then from the connected measurement model for η1 and η2
in two separate steps, correcting the (co)variances within each
model and across models using the formulas found in Hayes and
Usami (2020) Appendix B. This latter option is akin to a bias-
correcting (rather than bias-avoiding) version the blockwise SL
approach, with the advantage that the connected measurement
blocks can occur anywhere in a larger structural model – among
subsets of the predictors, subsets of the outcomes, or even con-
nected measurement models including both predictor and out-
come variables. As such, this approach allows the incorporation
of connected measurement structures while retaining the appeal
of the model-by-model extraction approach that characterizes
the classic Croon FSR method.

Hoshino and Bentler’s (2013) method
In the case of continuous indicators, Hoshino and Bentler
(2013) FSR method may be construed as a hybrid of the bias-
avoiding and bias-correcting approaches. These authors noted
that, under simple structure of the measurement indicators
and conditional independence of the unique factors, the off-
diagonal elements of the covariance matrix of Bartlett factor
scores will be unbiased but the variances of the Bartlett factor
scores will not be. Rather than correcting all entries of the
Bartlett covariance matrix using analytic formulas, Hoshino
and Bentler proposed substituting the estimated factor var-
iances from the initial runs of the factor (or measurement)
models at step 1 of the FSR on the diagonal elements of the
Bartlett matrix. In this way, the Hoshino-Bentler (hereafter
HB) method corrects bias in the diagonal elements of the
factor score covariance matrix while avoiding bias in the off-
diagonal elements through the use of Bartlett estimation.

The HB method is predicated upon the assumption that
the covariances of the Bartlett factor scores will be unbiased,
but this assumption does not always prove true. Hayes and
Usami (2020) demonstrated that the HB method is biased
whenever there are nonzero unique factor covariances across
factor models (for example, when a unique factor loading on
an indicator of ηW covaries with a unique factor loading on an
indicator of η1 or η2, as depicted by the two-headed arrows at
the bottom of Figure 2).

Similarly, it turns out that the HB method will be predic-
tably biased when measurement models are connected by
cross-loadings. As we show in Appendix B, in the presence
of cross-loadings the covariances of the Bartlett factor scores
are no longer unbiased. Because the HB method only corrects
the variances on the diagonal of the Bartlett covariance
matrix, this method will not completely ameliorate the bias
induced by cross-loadings, even if the measurement model
from which the Bartlett factor scores are extracted is correctly
specified to include all truly nonzero cross loadings.

Summary of FSR approaches
To summarize, the blockwise SL method effectively avoids
bias in FSR models that contain connected measurement

structures within the IV and DV blocks. When these blocks
are connected by cross-loadings or unique factor covariances,
however, the method breaks down. The HB method will be
biased in measurement models connected by cross-loadings
or correlated uniquenesses. Finally, the Croon (2002)
approach, implemented with Hayes and Usami's (2020) exten-
sion to connected measurement structures, should correct for
bias in models containing cross-loadings, unique factor cov-
ariances, or both.

Demonstration

In this section, we will demonstrate the principles outlined
above by applying SEM and FSR methods to population
matrices simulated based on the models of Figures 1 and 2.
We chose this population matrix approach over a more exten-
sive simulation because our primary focus was on demon-
strating the relative bias of these estimation methods, rather
than on the effects of repeated sampling, per se (but see Hayes
& Usami, 2020 for Monte Carlo simulation results in con-
nected measurement models with correlated uniquenesses).
Using this approach, we will see that some of these estimators
remain biased even when calculations are performed on the
true population matrices (rather than on imperfect sample
estimates) under correct specification. Although we assess
our SEM and FSR models using the configurations in Model
A and Model B of Figure 1a,b, we generated our population
examples under the fully latent measurement models depicted
in Figure 2. We generated all models using R statistical soft-
ware (R Core Team, 2013) and provide R code for all popula-
tion examples in the online supplemental material.

Data generation for the demonstration

For all examples, we began by specifying the covariance
matrix of the latent factors, η1, η2, and ηW , depicted in
Figure 2. We specified a moderate correlation of .3 between
η1 and η2 (Cohen, 1988). We set the covariances between both
η1 and η2 and the third variable, ηW , equal to

ffiffiffiffi
:3

p
, such that

the entire covariance between η1 and η2 would be explained
by W in model A, leaving zero disturbance covariance, and
such that both standardized partial regression coefficients in
Model B would equal .42, representing moderate effects. All
three variables were therefore standardized and distributed as:

W
η1
η2

2
4

3
5,MVN

0
0
0

2
4

3
5; 1

ffiffiffiffi
:3

p ffiffiffiffi
:3

pffiffiffiffi
:3

p
1 :3ffiffiffiffi

:3
p

:3 1

2
4

3
5

0
@

1
A:

We then generated the factor loading matrix. Let λ be the
factor loading for a given item that does not cross-load in the
model. For indicators that do cross-load in the model, let λp
be the loading on the primary factor and let λc represent the
cross-loading on the second factor. Across the conditions we
used to generate our population matrices, we set all λ ¼ :61,
all λp ¼ :49, and all λc ¼ :24 – a value almost half as large as
the primary loading. The rationale for these values was that,
with four standardized indicators per latent factor, tau-
equivalent loadings of .61 would result in a value of
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Cronbach’s (1951) α ¼ :7 under simple structure, represent-
ing a commonly endorsed lower bound for acceptable relia-
bility. Furthermore, for indicators that cross-loaded, the
values of .49 and .24 resulted in the same percentage variance
explained in the item as did λ ¼ :61 for the non-cross-loading
indicators. That is, the percent variance explained in each
indicator in every population model was approximately
:61ð Þ2 � 100 ¼ 37:21%. As such, all unique factor variances
were set at approximately 1� :61ð Þ2 � :63, regardless of
whether a given indicator featured a cross-loading. Using
these values resulted in a manifest variable covariance matrix
with standardized indicators (1s on the diagonals).

On the basis of these values, we generated four sets of popula-
tion matrices by crossing two simulation factors. First, we varied
the configuration of cross-loadings. In an initial set of condi-
tions, we generated population matrices based on a model in
which the solid gray loadings in Figure 2 were nonzero but the
dashed gray loadings were equal to zero in the population. In
a second set of conditions, we generated population matrices
based on a model in which both the solid and the dashed gray
lines in Figure 1a,b were nonzero in the population.

Second, we also varied the presence versus absence of unique
factor covariances in Figure 2. In a first set of conditions, all
unique factor covariances were set to zero, representing condi-
tional independence. In a second set of conditions, we set all
unique factor covariances in Figure 2 (depicted by two-headed
arrows with dotted lines) to a value of .32. Given the unique
factor variances of .63, unique covariances of .32 are equivalent
to unique factor correlations of approximately r � :3ffiffiffi

:6
p ffiffiffi

:6
p ¼ :5,

a strong correlation. Thus, we generated our populationmatrices
on the basis of a fully crossed 2 (indicators of only η1 cross-load
vs. indicators of both factors cross-load) � 2 (unique factor
covariances absent vs. present) factorial design with 4 cells.

Demonstrative analyses and outcomes

We fit both Model A and Model B to each simulated data
matrix using two different estimation approaches with the
lavaan package (Rosseel, 2012).3 First, we fit these models
using simultaneous SEM estimation assuming simple struc-
ture and conditional independence of the unique factors.
Second, we fit these models using each of the three FSR
methods, conducting all computations using the true popula-
tion matrices (including all cross-loadings and unique factor

covariances). Thus, the first set of analyses assessed bias in
misspecified SEMs that omit cross-loadings and correlated
uniquenesses whereas the second set of analyses examined
bias in correctly specified FSR models, with all computations
performed on the true measurement model matrices (see
supplemental R code for exact computations).

Our main outcomes in the simulated demonstration were
(1) the estimates of the structural regression parameters and
(2) the percent bias of the structural regression parameter
estimates, defined using the equation:

Percent Bias γj

� �
¼ γ̂j � γj

γj
� 100 (3)

where γ̂j is the estimate of either γ1 or γ2 returned by a given
estimator fit to a given simulated population matrix and
where γj is the true population value. Absolute values

of percent bias greater than 10 are considered problematic
(Muthén, Kaplan, & Hollis, 1987). In addition to percent bias
of the structural parameters, we also assessed the estimated
values of the exogenous (Model B) and disturbance (Model A)
covariance between η1 and η2 estimated under-misspecified
SEM and correctly specified HB FSR.

Results of the demonstration

Table 1 presents the percent bias of the structural regression
parameters in each simulated condition for Models A and B,
respectively, estimated using misspecified SEM models impos-
ing simple structure and conditionally independent unique-
nesses. First, examine the top half of Table 1, corresponding
to population structures with cross-loadings but no unique
factor covariances. In these conditions, as expected, when
simple structure was imposed in Model A, the structural
regression coefficients exhibited problematic positive bias for
any factor whose indicators featured omitted cross-loadings.
When simple structure was imposed in Model B, absolute
levels of bias were again problematic, with the direction of
the bias depending upon whether only one factor model or
both factor models featured indicators with omitted cross-
loadings. When only the indicators of η1 featured omitted
cross-loadings, estimates of γ1 were positively biased but
estimates of γ2 were negatively biased. By contrast, when
both factor models included indicators with omitted cross-
loadings, both structural regression coefficients exhibited

Table 1. Bias in structural parameters in simultaneous SEM models assuming simple structure of loadings and conditional independence of uniquenesses.

Model A Model B

First Factor Cross-Loads Both Factors Cross-Load First Factor Cross-Loads Both Factors Cross-Load

Par Est PB Est PB Par Est PB Est PB

Conditionally Independent Uniquenesses
γ1 0.55 0.62 14.08 0.63 14.16 0.42 0.47 10.97 0.37 −12.13
γ2 0.55 0.55 0.00 0.63 14.16 0.42 0.31 −25.90 0.37 −12.13

Correlated Uniquenesses
γ1 0.55 0.73 33.45 0.73 32.73 0.42 0.54 27.37 0.44 3.64
γ2 0.55 0.66 20.80 0.73 32.73 0.42 0.40 −4.42 0.44 3.64

Note: Par = population parameter, Est = estimate, PB = percent bias. Bold entries indicate absolute values of percent bias > 10, considered problematic.

3We fit all models using covariance matrix input, arbitrarily setting sample.nobs = 500. This arbitrary hypothetical N would, of course, have no impact on
the bias of the estimates, our primary outcome in the demonstration.
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negative bias in the simple structure models. Examining the
bottom half of Figure 1, we see that when (positive) nonzero
unique covariances were added to the model, all estimates
were inflated in the positive direction. This generally
increased the absolute magnitude of the positively biased
coefficients and counteracted the negative bias in coefficients
that were previously attenuated in models with cross-loadings
but no unique covariances.

Table 2 summarizes percent bias by condition for SL, HB,
and Croon methods calculated using the true population
matrices (i.e., correct model specification and perfect estima-
tion). First, examine the top half of Table 2, corresponding to
population models with nonzero cross-loadings but condi-
tionally independent unique factors. Examining the results
for models A and B under these conditions, we see that the
blockwise SL method produces unbiased estimates of the
structural coefficients in both models, because all cross-
loadings occur within-block (i.e., in the DV block for Model
A and the IV block for Model B).

The HB method produces unbiased estimates of the struc-
tural coefficients in Model A but biased estimates in Model
B. The reason for this is that, under these conditions, the
Bartlett covariances between ηW and each connected measure-
ment factor, η1 and η2, remain unbiased whereas the Bartlett
covariance between η1 and η2 becomes biased as a result of
the cross-loadings connecting η1 and η2. As such, the bivariate
latent regressions of η1 and η2 on ηW in Model A produce
unbiased coefficients whereas the regression of ηW on η1 and
η2 produces biased coefficients as a result of partialling out
overlapping variance from η1 and η2 that is estimated incor-
rectly. Turning to the bottom half of Table 2, we see that the
SL and HB methods exhibit problematic positive bias when
there are nonzero across-block unique factor covariances. By
contrast, the Croon method, applied using Hayes and Usami
(2020) connected measurement formulas, produces unbiased
estimates in every cell of Table 2.

Finally, Table 3 presents estimates of the latent variable
disturbance covariance between η1 and η2 in Model A and
estimates of the exogenous covariance between η1 and η2
from Model B from (a) SEM models that incorrectly imposed
simple structure in Model A, and (b) the HB method, calcu-
lated using the true (correctly specified) population matrices.
For the Model A disturbance covariance (row 1), the estimates
from misspecified SEM models were consistently positively
biased whereas the estimates from the HB method were con-
sistently negatively biased across conditions. In all cases, these
methods suggested nonzero values for the disturbance covar-
iance despite that the true population value was 0. A similar
pattern can be found for the exogenous covariance estimated
in Model B: misspecified SEM models overestimated the true
factor correlation whereas correctly specified HB models
underestimated this covariance across conditions.

General discussion

The theoretical discussion and simulated demonstrations pre-
sented in our paper clearly show that structural regression
coefficients from SEM models that impose simple structure
and omit important non-zero cross-loadings will generally be
biased, with the strength and direction of this bias varying as
a function of the configuration of omitted cross-loadings in
the model. Our theoretical discussion and simulated demon-
strations also provided a clear demonstration of the condi-
tions under which the SL and HB methods will exhibit bias,
even when calculated under correct specification using the
true population values. By contrast, Croon FSR estimation
implemented using Hayes and Usami’s (2020) connected
measurement formulas remained unbiased in all conditions.
Although the SL and HB methods are well known in the
literature, to our knowledge there are no other existing
demonstrations of their relative shortcomings under con-
nected measurement models. Furthermore, we are unaware

Table 2. Percent bias in structural parameters in SL, HB, and Croon FSR models under correct measurement model specification.

Model A Model B

First Factor Cross-Loads Both Factors Cross-Load First Factor Cross-Loads Both Factors Cross-Load

SL HB Croon SL HB Croon SL HB Croon SL HB Croon

Conditionally Independent Uniquenesses
γ1 0 0 0 0 0 0 0 6.57 0 0 17.57 0
γ2 0 0 0 0 0 0 0 6.57 0 0 17.57 0

Correlated Uniquenesses
γ1 20.84 20.26 0 15.96 15.96 0 23.35 25.09 0 15.96 26.88 0
γ2 14.99 15.45 0 15.96 15.96 0 12.48 16.54 0 15.96 26.88 0

Note: SL = Skrondal–Laake method, HB = Hoshino–Bentler method, Croon = Croon method with Hayes & Usami correction. Bold entries indicate absolute values
of percent bias > 10, considered problematic.

Table 3. Disturbance and exogenous covariances between η1 and η2 in Model A and Model B by condition and estimation method.

Conditionally Independent Uniquenesses Correlated Uniquenesses

First Factor Cross-Loads Both Factors Cross-Load First Factor Cross-Loads Both Factors Cross-Load

Par SEM HB SEM HB SEM HB SEM HB

Model A: σdη1 dη2 0 0.25 −0.11 0.49 −0.28 0.00 −0.25 0.29 −0.36
Model B: ση1η2 0.30 0.50 0.22 0.69 0.11 0.48 0.27 0.66 0.19

Note: Par = population parameter, σdη1 dη2 = disturbance covariance between η1 and η2 in Model A, ση1η2= exogenous covariance between η1 and η2 in Model A, SEM
= misspecified SEM estimation assuming simple structure and conditional independence, HB = Hoshino–Bentler FSR, with all constituent measurement models
correctly specified.
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of any examples in the literature of Croon FSR applied to
connected measurement models featuring cross-loadings.
Given the limitations of SL and HB estimation demonstrated
above and the increasing popularity of Croon’s (2002) method
as a viable general approach to FSR estimation, we believe
these findings represent an important clarification and exten-
sion of previous work in this area.
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Appendix A. Bias in the SL method in the case of across-block correlated uniquenesses

In this appendix, we show that the blockwise SL method will be biased in the presence of across-block correlated uniquenesses. Let FR� represent the matrix of
factor scores for all latent independent variables (IVs) in the structural regression model, estimated using the regression estimator, let FBη represent the matrix of

factor scores for all latent dependent variables (DVs) in the structural regressionmodel, estimated using the Bartlett estimator, letAR
� represent the factor scoring

matrix for the IVs in the model and let AB
η represent the factor scoring matrix for the DVs in the model. The expected covariance between F� and Fη equals:

cov FR� ;F
B
η

� �
¼ cov AR

� x;A
B
ηy

� �
¼ AR

� cov x; yð ÞAB0
η ¼ AR

� ΛxΦ�ηΛ
0
y þΘxy

� �
AB

0

η ¼ AR
�ΛxΦ�ηΛ

0
yA

B
0

η þ AR
�ΘxyA

B
0

η (A1)

where the final two identities follow from the standard definition of the common factor model, in whichΛx andΛy are the factor loadingmatrices for the x and
ymeasurement models (i.e., the IV and DV blocks), respectively,Φ�η is the across-block covariance matrix, andΘxy is the matrix of unique factor covariances
across blocks. When there are no across-block unique factor covariances, Θxy ¼ 0, and the second term in (A1) disappears, leaving:

cov FR� ;F
B
η

� �
¼ AR

�ΛxΦ�ηΛ
0
yA

B
0

η (A2)

Skrondal and Laake (2001, p. 569) demonstrated that, in this case, post-multiplying cov FR� ; F
B
η

� �
by the inverse of the variance of the regression-

estimated IVs yields the matrix of structural regression parameters, Γ. That is:

cov FR� ; F
B
η

� �
var FR�

� ��1 ¼ AR
�ΛxΦ�ηΛ

0
yA

B
0

η var FR�
� ��1 ¼ Γ (A3)

It is easy to see that when there are some across-block unique factor covariances, Θxy�0 and the equation for the structural regression parameters
becomes:

cov FR� ;F
B
η

� �
var FR�

� ��1
¼ AR

�ΛxΦ�ηΛ
0
yA

B
0

η var FR�
� ��1

þ AR
�ΘxyA

B
0

η var FR�
� ��1

¼ Γþ AR
�ΘxyA

B
0

η var FR�
� ��1

: (A4)

Equation (A4) clearly demonstrates that the SL estimate of the structural parameters will be biased in the presence of across-block unique factor
covariances. It is only when Θxy ¼ 0 under conditional independence of the across-block uniquenesses that the second term in Equation (A4) vanishes
and the SL estimate reduces to the true structural parameter matrix, Γ. As mentioned in the body of the paper, the SL method is undefined when there
are nonzero cross-loadings across the IV and DV blocks. In such a case, the factor scores must be extracted from the entire across-block connected
measurement model and there is no possibility of estimating the IV block with the regression method and the DV block with the Bartlett method.

Appendix B. Bias in the HB method in the presence of cross-loadings

The HB method for conducting FSR involves extracting all factor scores using the Bartlett estimator, and then applying a correction to the variances on the
diagonal of the covariance matrix of the factor scores. This method produces unbiased estimates of the structural parameters when the measurement models
are not connected by correlated uniquenesses or cross-loadings (Hoshino & Bentler, 2013). Hayes and Usami (2020) demonstrated that the HB method is
biased in the presence of nonzero unique factor covariances across factor models. In this Appendix, we show analytically that the HB method will also
produce biased estimates in connected measurement models featuring cross-loadings. Hayes and Usami (2020, Equations (B7) and (B9)) showed that the
expected variance-covariance matrix of a connected measurement model estimated using the Bartlett method can be written:

cov FBη ;F
B
η

� �
¼ Φþ AB

ηΘAB
0

η (B1)

where FBη are, once again, the Bartlett-estimated factor scores from the connected measurement model, Φ is the variance-covariance matrix of the
latent variables in the measurement model, that is, cov η; ηð Þ, AB

η is, once again, the Bartlett factor scoring matrix, and Θ is the variance-covariance
matrix of the unique factors.

As shown by Hayes and Usami (2020, footnote 7), when a model contains no cross-loadings or unique factor covariances, the second term,

AB
ηΘAB

0
η , results in a matrix with zeroes in the off-diagonals and non-zero elements in the diagonals. For example, with two latent factors, η1 and η2, in

a given measurement model, this term may be written as the partitioned matrix product:

AB
ηΘAB

0

η ¼ AB
η1

0

0 AB
η2

" #
Θη1 0
0 Θη2

� �
AB

η1

0
0

0 AB
η2

0

" #
¼ AB

η1
Θη1A

B
η1

0
0

0 AB
η2
Θη2A

B
η2

0

" #
(B2)

where AB
η1

and AB
η2

are row vectors of factor scoring coefficients for η1 and η2, respectively, and where Θη1 and Θη2 are the unique factor covariance

matrices for η1 and η2, which may be assumed diagonal for our current purposes. Under these ideal circumstances, the HB correction to the diagonal

elements of cov FBη ; F
B
η

� �
will, in essence, erase or ‘zero-out’ the influence of the AB

ηΘAB
0

η term in Equation (B1), since this product only affects the

variances in the main diagonal of the final matrix.
Hayes and Usami (2020) pointed out that the product AB

ηΘAB
0

η would contain nonzero off-diagonal elements in the presence of nonzero unique
factor covariances across measurement models. In this case, Equation (B2) would become:

AB
ηΘAB

0

η ¼ AB
η1

0

0 AB
η2

" #
Θη1 Θη1η2
Θη2η1 Θη2

� �
AB

η1

0
0

0 AB
η2

0

" #
¼ AB

η1
Θη1A

B
η1

0
AB

η1
Θη1η2A

B
η2

0

AB
η2
Θη2η1A

B
η1

0
AB

η2
Θη2A

B
η2

0

" #
(B3)

In such a case, the HB correction to the diagonal elements of cov FBη ;F
B
η

� �
would not remove the bias resulting from the off-diagonal elements of AB

ηΘAB
0

η .

Here, we point out that even if all unique factors are conditionally independent, such that Θ ¼ Θη1 0
0 Θη2

� �
with diagonal Θη1 and Θη2 , the product
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AB
ηΘAB

0
η will have nonzero off-diagonals if the partitioned factor scoring matrix AB

η contains non-zero off-diagonals. In such a case, Equation (B2) would
become:

AB
ηΘAB

0

η ¼ AB
11 AB

12
AB

21 AB
22

� �
Θη1 0
0 Θη2

� �
AB

11

0
AB

21

AB
12 AB

22

0

" #
¼ AB

11Θη1 AB
12Θη2

AB
21Θη1 AB

22Θη2

� �
AB

11

0
AB

21

AB
12 AB

22

0

" #

¼ AB
11Θη1A

B
11

0 þ AB
12Θη2A

B
12 AB

11Θη1A
B
21 þ AB

12Θη2A
B
22

0

AB
21Θη1A

B
11

0 þ AB
22Θη2A

B
12 AB

21Θη1A
B
21 þ AB

22Θη2A
B
22

0

" #
(B4)

It turns out that AB
η will exhibit such a form when either the model for η1, the model for η2 or both contain cross-loadings on the other factor. As is

well-known (Bartlett, 1937; cf. Devlieger et al., 2016), the formula for the Bartlett factor scoring matrix is:

AB
η ¼ Λ

0
Θ�1Λ

� ��1
Λ

0
Θ�1: (B5)

To understand how this formula performs in connected measurement models containing cross-loadings, let λη1 ss½ �and λη2 ss½ � be column vectors of factor
loadings for indicators in the η1 and η2 measurement models that exhibit simple structure (that is, indicators that do not cross-load on the other
factor). For indicators that feature cross-loadings, let λη1 p½ � and λη2 p½ � be column vectors of factor loadings on the primary factor and let λη1 c½ � and λη2 c½ � be

column vectors of cross-loadings on the non-primary factor. Then, we can define Λ as the partitioned matrix:

Λ ¼
λη1 ss½ � 0
λη1 p½ � λη1 c½ �
0 λη2 ss½ �

λη2 c½ � λη2 p½ �

2
6664

3
7775: (B6)

With conditionally independent uniquenesses, we may define Θ�1 as the partitioned matrix:

Θ�1 ¼ Θ�1
η1

0

0 Θ�1
η2

" #
¼

Θ�1
η1 ss½ �

0 0 0

0 Θ�1
η1 cl½ �

0 0

0 0 Θ�1
η2 ss½ �

0

0 0 0 Θ�1
η2 cl½ �

2
666664

3
777775 (B7)

where Θ�1
η1

and Θ�1
η2

are diagonal matrices with the reciprocals of the diagonal elements of Θη1 and Θη2 on the diagonals, where Θ�1
η2 ss½ �

and Θ�1
η2 ss½ �

are the
subsets of these matrices corresponding to the indicators of η1 and η2 that conform to simple structure and where Θ�1

η1 cl½ �
and Θ�1

η2 cl½ �
are the subsets of

these matrices corresponding to the indicators of η1 and η2 that exhibit cross loadings.
With these definitions in hand, we can define:

Λ0Θ�1 ¼
λ
0
η1 ss½ �

Θ�1
η1 ss½ �

λ
0
η1 p½ �

Θ�1
η1 cl½ �

0 λ
0
η1 c½ �

Θ�1
η1 cl½ �

0 λ
0
η2 c½ �

Θ�1
η2 cl½ �

λ
0
η2 ss½ �

Θ�1
η2 ss½ �

λ
0
η2 p½ �

Θ�1
η2 cl½ �

2
4

3
5 (B8)

and

Λ0Θ�1Λ ¼
λ
0
η1 ss½ �

Θ�1
η1 ss½ �

λη1 ss½ � þ λ
0
η1 p½ �

Θ�1
η1 cl½ �

λη1 p½ � þ λ
0
η2 p½ �

Θ�1
η2 cl½ �

λη2 c½ � λ
0
η1 p½ �

Θ�1
η1 cl½ �

λη1 c½ � þ λ
0
η2 c½ �

Θ�1
η2 cl½ �

λη2 p½ �

λ
0
η1 c½ �

Θ�1
η1 cl½ �

λη1 p½ � þ λ
0
η2 p½ �

Θ�1
η2 cl½ �

λη2 c½ � λ
0
η1 c½ �

Θ�1
η1 cl½ �

λη1 c½ � þ λ
0
η2 ss½ �

Θ�1
η2 ss½ �

λη2 ss½ � þ λ
0
η2 p½ �

Θ�1
η2 cl½ �

λη2 p½ �

2
4

3
5 (B9)

It is clear from Equation (B9) that even if one factor model contained no cross-loading indicators – e.g., say Λη2 ¼ λη2 ss½ �

h i
such that all terms

involving λη2 p½ � and λη2 c½ � vanish from Equation (B9) – the matrix product Λ
0
Θ�1Λ will contain nonzero off-diagonal elements with the result that its

inverse Λ
0
Θ�1Λ

� ��1
will also contain nonzero off-diagonal elements. From these equations, we can see that formula (B5) for the Bartlett factor score

matrix, AB
η , will return a result with nonzero entries in both the diagonal and off-diagonal elements of the partitioned matrix. For this reason, the term

AB
ηΘAB

η in Equation (B1) will create bias in both the diagonal and off-diagonal elements of the covariance matrix of the Bartlett factor scores.
Correcting only the variances on the diagonal using the HB method will fail to completely rid Equation (1) of bias because, in such a situation, the
Bartlett factor score covariances are no longer unbiased estimates of the true latent factor covariances.
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