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Abstract
Researchers frequently wish to make incremental validity claims, suggesting that a construct of interest significantly predicts a given
outcomewhen controlling for other overlapping constructs and potential confounders. Once the significance of such an effect has been
established, it is good practice to also assess and report its magnitude. In OLS regression, this is easily accomplished by calculating the
change in R-squared,ΔR2, between one’s full model and a reduced model that omits all but the target predictor(s) of interest. Because
observed variable regression methods ignore measurement error, however, their estimates are prone to bias and inflated type I error
rates. As a result, researchers are increasingly encouraged to switch from observed variable modeling conducted in the regression
framework to latent variable modeling conducted in the structural equation modeling (SEM) framework. Standard SEM software
packages provide overallR2measures for each outcome, yet calculation ofΔR2 is not intuitive inmodelswith latent variables. Omitting
all indicators of a latent factor in a reduced model will alter the overidentifying constraints imposed on the model, affecting parameter
estimation and fit. Furthermore, omitting variables in a reduced model may affect estimation under missing data, particularly when
conditioning on those variables is essential to meeting the MAR assumption. In this article, I describe four approaches to calculating
ΔR2 in SEMs with latent variables and missing data, compare their performance via simulation, describe a set of extensions to the
methods, and provide a set of R functions for calculatingΔR2 in SEM.
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Researchers frequently wish to argue that a construct of theoret-
ical interest significantly influences an outcome variable in a
manner that is distinct and separable from the influences of other
overlapping constructs and confounders (Hunsley & Meyer,
2003; Sechrest, 1963; Wang & Eastwick, 2020; Westfall &
Yarkoni, 2016). When the effect associated with a key predictor
variable remains significant in an analysis that includes all rele-
vant control variables, the predictor is deemed to have incremen-
tal validity, providing unique prediction of the outcome variable
even after controlling for the set of competing predictors. Yet,
even if the effect of a key predictor variable on a given outcome
remains statistically significant when controlling for a set of co-
variates, the variable will be of limited utility if its effect is too
small to be considered practically significant (Kirk, 1996). For
this reason, researchers are well advised to compute and report a
measure of effect size along with their analysis.

Within the regression framework, effect size is typically
based on the proportion of variance explained in one’s out-
come by a set of predictor variables – that is, multiple R-
squared (and the related f2; see Cohen, 1988). As the preced-
ing discussion implies, although researchers may at times be
interested in the proportion of variance explained by the set of
all predictors in a given model (the model R2), they are quite
often interested in the increment in variance uniquely ex-
plained by a key predictor variable or set of predictor vari-
ables. This increment in R2 (ΔR2) is typically computed as the

difference between anR2 obtained from one’s full model,R2
Full

and an R2 obtained from a reduced model that omits the target
predictors of interest, i.e.: R2

Reduced – i.e., R-squared Change,
calculated as:

ΔR2 ¼ R2
Full−R

2
Reduced: ð1Þ

These procedures for incremental validity testing and effect
size estimation are easily implemented in the ordinary least
squares (OLS) regression framework, yet the accuracy of
these manifest variable regression methods is undermined by
their reliance on the unrealistic assumption that all predictor
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variables are measured without error (Cohen et al., 2003;
Pedhazur, 1997). Although the harmful effects of ignoring
measurement error in one’s analysis have long been known
(see e.g., Bollen, 1989, ch. 5) the use of observed variable
methods has remained widespread, leading to a recent ground-
swell of renewed interest in demonstrating to a modern audi-
ence the myriad ways in which ignoring measurement error in
one’s analyses can lead to biased parameter estimates and
inflated type I error rates (Cole & Preacher, 2014;
Ledgerwood & Shrout, 2011; Savalei, 2018; Westfall &
Yarkoni, 2016). The fact that parameter estimates from ob-
served variable regression analyses are prone to becoming
distorted and untrustworthy has led to increasingly forceful
recommendations from methodological experts urging re-
searchers to switch frommanifest variable models implement-
ed in the OLS regression framework to latent variable
models implemented in the structural equation modeling
(SEM) framework when testing incremental validity
claims (Cole & Preacher, 2014; Wang & Eastwick,
2020; Westfall & Yarkoni, 2016).

With respect to using significance testing to support an
incremental validity claim, the transition from OLS to SEM
is straightforward: simply assess whether the (partial) struc-
tural regression coefficient associated with one’s target latent
variable of interest remains significant when controlling for
the influences of the other latent covariates included in the
model. With respect to computing the effect size associated
with an incremental validity claim, at first glance, it seems
logical to assume that computing ΔR2 in latent variable
models would be similarly straightforward. After all, most
widely used SEM software packages can output the overall
model R2 for each endogenous outcome upon request (Bollen,
1989; Jöreskog & Sörbom, 1993). If one can configure a suit-
able reduced model that excludes the target latent variable(s)
of interest, then ΔR2 can be easily calculated using Eq. (1).

It turns out that this second step – configuring a suitable
reduced model that omits the effect of a target latent variable –
is less straightforward than it might initially appear. The dif-
ficulties inherent in this task were well summarized by Bengt
Muthén in response to a 2017 Mplus discussion forum post
from a user whose attempts to calculate ΔR2 from a SEM
program output actually resulted in negative ΔR2 values:

The comparison of R-squares across models like this is a
bit problematic in my view, I'm afraid, when x1 and x2
are latent. There is not only a question of how R-square
changes when including/excluding one of them as alter-
natives. Because they are latent, it is also a matter of
model fit - for one alternative the model may not fit at
all because different restrictions are imposed on the co-
variances between the DV and the indicators of the x1, x2
factors. I know of no references [on this topic]. (B.
Muthén, 2017, formatting added)

As Muthén’s statement implies, the SEM framework pre-
sents several inherent challenges to the accurate calculation of
ΔR2. Ironically, these challenges result directly from the fea-
tures of SEM that make the method so attractive to users: the
ability to fit overidentified models featuring omitted paths and
other constraints, the ability to purge error from one’s manifest
measures through the estimation of latent variables, and the
ability to address missing data using built-in full information
maximum likelihood (FIML; Arbuckle, 1996) estimation. The
statistical machinery that makes these features possible relies
on solving a system of simultaneous equations implied by
every variable included in one’s model. For this reason, omit-

ting a set of target variables in order to calculate R2
Reduced risks

fundamentally altering the model algebra in a manner that
could inject bias into the results. This risk is only heightened
in the presence of missing data, when the variables to be
omitted in the calculation of R2

Reduced may also be important
causes of missing data that must be conditioned on in the
model in order to meet the MAR assumption and accurately
estimate the model’s parameters (Rubin, 1976).

As Muthén’s statement also implies, references on these
topics are surprisingly scarce in the SEM literature. Only a
handful of articles reference ΔR2 in SEMs, and even fewer
provide guidance for its computation. For example, Graham
(2008) discusses how to implement a variety of classic general
linear model analyses in the SEM framework but does not
explicitly present a method for computing ΔR2. Two authors
who do provide methods for computing ΔR2 are Preacher
(2006) and de Jong (1999).1 Both of these authors suggest
elegant reparameterizations of a user’s model designed to, in
essence, “trick” a given SEM software package into returning
R-squared change. Preacher (2006) construes ΔR2 as the
squared semipartial correlation between a given predictor
and an outcome variable and obtains this standardized quan-
tity via the strategic use of single-indicator latent variables.
Alternatively, de Jong (1999) coaxes increments in R-squared
out of SEM software via a latent Cholesky decomposition of
the variance-covariance matrix of a set of predictor variables.

Despite their effectiveness and sheer cleverness,
implementing Preacher’s (2006) and de Jong’s (1999)
methods may prove challenging for applied researchers hop-
ing to compute ΔR2 in their own analyses. While the mathe-
matical rationales for these approaches may make intuitive
sense to quantitative methodologists, the inherent complexity
of these methods may prove intimidating to users less com-
fortable with SEM software defaults, single-indicator latent
variable approaches, path tracing rules, and (in de Jong’s case)
Cholesky decompositions of variance-covariance matrices.
This is particularly troubling given that the amount of syntax

1 I wish to offer a sincere thanks to the second reviewer on this manuscript for
pointing me toward this reference, which had eluded my initial literature
search prior to the first submission of this paper.
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required to implement either method is formidable, with am-
ple opportunity for errors in the hands of less confident users.
User specification errors may result in convergence warnings
that could prove difficult to troubleshoot without a solid un-
derstanding of the mathematical logic of the models. Worse
still, such errors could simply result in a misspecified model
that produces no warnings at all, but that ultimately returns an
incorrect result that may be easily mistaken for accurate.

Preacher’s (2006) approach is arguably more straightforward
to implement than the latent Cholesky decomposition proposed
by de Jong (1999), and his method works perfectly for comput-
ingΔR2 due to the addition of a singlemanifest or latent variable.
However, there is no obvious extension of this method for com-
puting the change in R-squared due to a set of ≥ 2 predictors.
Furthermore, although treatingΔR2 as a squared semipartial cor-
relation ismathematically and statistically equivalent to treating it
as the difference in multiple R2 due to the addition of a single
predictor in an OLS regression model, experience suggests that
applied researchers do not typically think aboutΔR2 in terms of
semipartial correlations. With this in mind, it seems intrinsically
desirable to develop more intuitive, less syntactically demanding
general approaches to computing ΔR2 in SEMs that map more
directly onto the way real researchers are used to computing and
conceptualizing this statistic: as the difference between a full and
reduced model R2 using the hierarchical regression approach
depicted in Eq. (1).

Toward this end, the present article attempts to provide a
reference for researchers on the topic of computing ΔR2 in
SEMs featuring latent variables and missing data. I begin by
reviewing four possible approaches to computing ΔR2 in
SEMs that map directly onto the familiar approach of Eq.
(1), clearly delineating which approaches produce accurate
results under general conditions and which approaches may
produce biased results in latent variable models with missing
data. Then, I establish proof of concept by comparing the
methods’ performance in a demonstrative simulation.
Following this, I describe a series of extensions of the methods
and conclude with recommendations for substantive re-
searchers and a description of three accompanying R func-
tions (R Core Team, 2013) that can be used in concert with
the lavaan package (Rosseel, 2012) to implement the direct
matrix calculations described under Approach 3.

Throughout the article, I strive to present all technical ma-
terial in a manner detailed enough to retain the interest of
quantitative and methodological experts but accessible
enough to remain useful to substantive and applied re-
searchers. As such, the majority of matrix algebra is relegated
to the appendices and to the internal arguments of two easy-to-
use R functions. Knowledge of path tracing rules (see
McArdle, 2005; Wright, 1934) is useful for understanding
the origins of certain key equations throughout the paper,
but these may just as easily be taken on faith and even skipped
over without major loss of continuity.

Four approaches to computing R-squared
differences in SEMs with latent variables
and missing data

As a template for discussing ΔR2 in SEMs, imagine that the
model of Fig. 1a is the full model encompassing a researcher’s
hypotheses for a certain study. Assuming that the model fits
the data reasonably well, the researcher may be interested in
reporting R2 measures of effect size. If the interest is in the
proportion of variance explained by the set of both latent pre-
dictors, ξ1 and ξ2, this quantity can be easily calculated using
the formula:

R2
ηi
¼ 1−

var ζið Þ
var ηið Þ ð2Þ

where ηi is the ith endogenous variable (in this case, η1),
var(ηi) is its total variance, and var(ζi) is the disturbance
(residual) variance of ηi after its prediction in a structural re-
gression (see Bollen, 1989, pp. 117–119; Jöreskog& Sörbom,
1993 pp. 26–27). Originally implemented in LISREL, this
type of R2 calculation is now performed upon request by most
standard SEM software packages such as lavaan (Rosseel,
2012) and Mplus (L. K. Muthén & Muthén, 2017).

But what if the researcher is particularly interested in the
increment in R2 contributed by predictor ξ2, above and beyond
that due to ξ1? For example, perhaps ξ2 is the researcher’s key
predictor of interest (e.g., smoking habits) while ξ1 is a control
variable (e.g., other negative diet and lifestyle factors) includ-
ed in the latent variable regression. Once the full model of Fig.

1a is estimated, it is easy to compute R2
Full using Eq. (2). But

the question remains how to appropriately compute R2
Reduced in

order to calculateΔR2 via Eq. (1). In the sections that follow, I
describe four potential strategies for computing the increment
in R2 due to ξ2 in the model of Fig. 1a and compare their
strengths and weaknesses.

Approach 1: Dropping ξ2 from the model to
calculate R2

Reduced

Mirroring OLS regression, the most intuitive approach to cal-

culating R2
Reduced in the model of Fig. 1 would be to simply

omit the measurement model for the target variable, ξ2, from
the larger SEM and calculate R2

Reduced on this reduced model
using Eq. (2). That is, one would omit the entire measurement
model – indicators x5 through x8 – from the reduced model, as
depicted in Fig. 1b, thereby removing the entire ξ2 factor. The
primary advantages of this approach are its simplicity, its fa-
miliarity to researchers used to implementing an analogous
procedure to calculate ΔR2 with observed variables in OLS
regression, and its accuracy when the data are complete and
the model of Fig. 1a is the true data generating model.
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Fig. 1 (a) Full latent variable model and (b)–(d) possible approaches to specifying a reduced model omitting the structural regression of η1 on ξ2
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Despite its intuitive appeal, however, this approach
carries limitations. For example, even if global model fit
appears acceptable, any parameter bias due to minor model
misspecifications (e.g., omitting small nonzero cross-
loadings or correlated uniquenesses; see B. Muthén &
Asparouhov, 2012) might manifest itself differently in the
full model of Fig. 1a and the reduced model of Fig. 1b,
leading to estimates of R2

Full and R
2
Reduced that are, in essence,

“moving targets” (B. Muthén, 2017). Furthermore, if the
measurement models for ξ1 and ξ2 were connected by
cross-loadings, removing the measurement model for factor
ξ2 in Fig. 1b would no longer be possible without biasing the
parameters of the model for ξ1, perhaps severely
(Asparouhov et al., 2015; Morin et al., 2013; B. Muthén &
Asparouhov, 2012), rendering questionable any estimate of

R2
Reduced calculated from the model.
More important still, even if simple structure and condi-

tional independence are reasonable approximations to the
population model, as drawn in Fig. 1, Approach 1 may falter
in the presence of missing data. As a simple example, suppose
that missing data on indicators y1–y4 are directly caused by the
measurement model for ξ2. This could occur, for example, if
individuals higher in a latent measure of smoking behavior
(ξ2) were less willing to report information related to their
distal health outcomes (indicators y1–y4 of latent factor η1).
Furthermore, suppose that the researcher is using built-in
FIML estimation to address missing data (Arbuckle, 1996).

Like multiple imputation (MI; Enders, 2010; Little &
Rubin, 1987; Rubin, 1987), FIML estimation is only accurate
under the assumption that the data are missing at random
(MAR: Rubin, 1976). This assumption implies that the prob-
ability of missing data on reported health outcomes is uncor-
related with participants’ actual health outcomes (the data they
would have provided, but chose not to) after conditioning on
the true causes of missing data (their level of latent smoking
behavior), assumed present in the model. Stated plainly, if
smokers are simply less likely than nonsmokers to report their
health information in general, regardless of whether their
health is good or poor, then the observed (complete data)
scores obtained from smokers who opt to respond to health
questions may be treated as a random subsample of possible
scores drawn from the conditional distribution of health out-
comes among smokers. If so, the conditional mean and vari-
ance of health outcomes will be estimated accurately in the
full structural regression model of Fig. 1a. If the same can be
said for all other strata of smoking behavior (e.g., if the ob-
served health outcome data among moderate smokers repre-
sents a random sample of their possible scores, and if the same
can be said for low smokers and nonsmokers, etc.), then all
conditional means (y-hat values) and (residual) variances will
be unbiased in the regression of Fig. 1a, and the model’s
coefficients will be estimated accurately.

As is well known in the missing data literature, however, if
one fails to condition on the true causes of missing data in
one’s model, then the MAR assumption is no longer met, and
any parameter bias caused by missing data will remain, re-
gardless of whether one uses a modern missing data handling
method like FIML orMI in fitting the model (see Collins et al.,
2001; Rubin, 1976). That is, if latent smoking behavior (ξ2)
really is the true cause of missing data on health outcomes (η1)
and if, further, this variable is left out of the analysis model, as
would be the case in the reduced model of Fig. 1b, then the
conditional distributions of reported (observed, non-missing)
health outcomes within each strata of remaining predictor ξ1
(say, latent dietary habits) will not be the same conditional
distributions as those estimated in the full model of Fig. 1a
and will no longer be guaranteed to represent random subsam-
ples of participants’ possible health outcome scores. For this
reason, any bias caused by missing data will remain in the
model estimates, even if FIML estimation is switched on in
one’s SEM software package of choice.2

In sum, Approach 1 has the potential to be effective under
the ideal conditions of perfectly correct model specification
and complete data but may break down under misspecification
or missing data. Under missing data, Approach 1 will fail if ξ2
and its indicators represent important causes of missingness
that must be included in the model in order to meet the MAR
assumption. The essence of MAR is that the conditional dis-
tributions of a given outcome variable may be treated as
completely random with respect to missing data only when
the analyst has conditioned on the correct set of predictors (the
true missing data causes). It is this imperative to include rather
than omit key missing data predictors from the model that
renders Approach 1 (dropping ξ2) potentially precarious when
missing data are present. Next, I describe an alternative strat-
egy that retains the ξ2 measurement model instead of dropping
it, but restricts its structural path to η1 to zero.

2 An equivalent way to conceive of the MAR assumption is in terms of con-
trolling for a covariate in multiple regression. If one envisions smoking (ξ2) as
the cause of a 0/1 missing data indicator corresponding to nonresponse on
health outcomes (η1), such that the only correlation between the missing data
indicator and participants’ scores on health outcomes (both observed and
missing) in the population is through their common cause (smoking, ξ2), then
controlling for smoking behavior in a regression model would render the
missing data indicator conditionally independent from the values of the health
outcome scores that would have been obtained if all participants had provided
complete data. As such, the missing data indicator does not need to be explic-
itly included in the conditional regression predicting health outcomes, as it
exerts no influence on health outcomes after partialling out its true cause (it
is ignorable, see Little & Rubin, 1987). If smoking is not included as a covar-
iate in themodel, however, then its influencewill not be partialed out of the 0/1
missing data indicator, and this indicator will remain correlated with the miss-
ing scores on health outcomes. This is analogous to a quasi-experimental
model in which a variable appears to exert a significant treatment effect until
a confounding variable is entered into the analysis, rendering the influence of
the spurious treatment indicator nonsignificant.
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Approach 2: Fixing the ξ2→ η1 structural path
to zero

Aside from dropping ξ2 from the model entirely, arguably

the second-most intuitive approach to estimating R2
Reduced

would be to retain the ξ2 measurement model (including
its exogenous covariance with ξ1) in the reduced model
but constrain the structural regression of η1 on ξ2 to zero.
This would serve to include all variables in the reduced
model instead of dropping the ξ2 measurement model and
risking potentially harmful ramifications for parameter bi-
as and missing data estimation. Approach 2 is visually
depicted in Fig. 1c, in which the structural path from
ξ2→ η1 is drawn as a gray, dotted line with a zero value
next to it, indicating that this path may either be omitted
from the model completely or, equivalently, explicitly
fixed to zero in one’s model syntax.

Although on the surface Approach 2 may appear to
circumvent the shortcomings inherent in Approach 1, its
potential benefits are undercut by a fatal flaw: if one
constrains the ξ2→ η1 path to zero in one’s model when
this path actually departs significantly from zero in the
population, then this overidentifying constraint will alter
the model algebra in a manner that will likely harm
both local and global fit and ultimately inject parameter
bias throughout that model regardless of whether or not
there are missing data on any model variables (Bollen,
1989; Kenny et al., 1998; Kenny & Milan, 2012). When
the measurement model for ξ2 is also an important
cause of missing data on the other model variables
(e.g., indicators y1–y4 of η1), omitting the ξ2→ η1 path
will additionally affect the ability of FIML estimation to
adjust for missing data. By constraining the direct rela-
tionship between ξ2 and η1 to zero, the model of Fig. 1c
postulates that ξ2 is only related to η1 indirectly through
its correlation with ξ1. As such, the FIML algorithm
used to estimate the model will not be able to fully
adjust the parameter estimates and implied covariances
for the likely influence of missing data because the co-
variance information supplied to the algorithm will be
fundamentally inaccurate and incomplete (this is because
this model is, essentially, a saturated correlates model
with an omitted correlation; see J. W. Graham, 2003).

It seems clear, then, that neither Approach 1 nor
Approach 2 represents a perfect solution to the problem
of computing ΔR2 in SEMs. In the following sections, I
describe two alternative approaches that allow analysts
to compute ΔR2 without encountering the problems
raised by Approaches 1 and 2: (1) a direct matrix cal-
culation of ΔR2 using parameter estimates from the full
model (Approach 3), and (2) a saturated correlates ap-
proach to specifying the reduced model (see J. W.
Graham, 2003).

Approach 3: Direct matrix calculation of R2
Reduced

A third approach to calculating ΔR2 in SEMs involves direct

matrix calculation of R2
Reduced from the model-implied covari-

ances obtained from the full model of Fig. 1a. To lay the
foundation for this approach, recall that in OLS regression,
R2 for a given model, say one’s full model, may be calculated
using the formulas:

R2
Full ¼ β

0
Rxxβ

¼ β
0
rxy

ð3Þ

where β is the column vector of standardized regression
weight with β′ as its transpose, Rxx is the correlation matrix
of the predictor variables, and rxy is a column vector of corre-
lations between each predictor and the outcome, y (Cliff,
1987; Pedhazur, 1997). Calculation of R2

Full using Eq. (3) re-
quires first calculating the standardized regression coefficients
contained in β. This may be accomplished using the formula:

β¼R−1
xx rxy: ð4Þ

These formulas imply that one can calculate R2 and β from
a set of sufficient statistics – in this case, the sample correla-
tions among the x’s and y – rather than the raw data. Suppose
that Eqs. (3) and (4) are used to calculate R2

Full and β based on
one’s full model, including all predictors and covariates of

interest. Calculation of R2
Reduced and, in turn, ΔR2 may be

easily achieved by partitioning the correlation matrix Rxx

and correlation vector rxy into parts involving the reduced
model variables and parts involving the target variables from
the full model that are to be omitted in the full model.

Specifically, let Rxx r½ � be the correlation matrix of the pre-

dictors included in the reduced model, with the target predic-
tors from the full model omitted, and let rxy r½ � be a column

vector of correlations between each predictor from the re-
duced model and the outcome variable, y. With these
definitions in hand, it is easy to see how one may

calculate R2
Reduced as:

R2
Reduced ¼ β

0
r½ �Rxx r½ �β r½ �

¼ β
0
r½ �rxy r½ �

ð5Þ

where

β r½ �¼R−1
xx r½ �rxy r½ � : ð6Þ

Once R2
Full and R2

Reduced are calculated using Eqs. (5) and
(6), ΔR2 can be calculated directly via Eq. (1).

Though these concepts may seem obvious to readers well
versed in matrix formulations of multiple regression, they pa-
ve the way for a direct matrix method for calculating ΔR2 in
SEM. The primary difference between direct matrix
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calculation ofΔR2 in OLS regression and direct matrix calcu-
lation of ΔR2 in SEM is that in OLS, the correlations
contained inRxx and rxy and their partitions are observed sam-
ple correlations, whereas in SEM, these must be replaced with
model-implied correlations among predictor and outcome
variables that may be manifest, latent, or a combination of
the two. This requires computing the full model-implied cor-
relation matrix of all manifest and latent variables, as detailed
in Appendix 1.

Once one has calculated the full model-implied correlation

matrix, bRFull, as described in Appendix 1, it is easy to perform

direct matrix calculation of R2
Reduced from Eqs. 5 and 6 by simply

defining Rxx r½ � from Eqs. 5 and 6 in terms of the model-implied

correlations among the reduced-model predictors in a given
structural regression of interest within one’s larger SEM and
defining rxy r½ � as a vector of model-implied correlations between

the reduced model predictors and the outcome variable.3 In the
running example, this can be accomplished by setting Rxx r½ �¼brξ1ξ1 ¼ 1 and β r½ �¼rxy r½ �¼brξ1η1 , yielding an estimate of

R2
Reduced ¼ β

0
r½ �br−1ξ1ξ1β r½ � ¼ β

0
r½ � 1ð Þβ r½ � ¼ β2

r½ � ¼ br2ξ1η1 , exactly as

one would expect in a standardized bivariate regression.

Assuming that R2
Full has already been calculated from the full

model of Fig. 1a using Eq. (2), ΔR2 can be calculated as the
simple difference defined in Eq. (1).

The matrix method of calculating R2
Reduced andΔR2 carries

a key advantage over Approaches 1 and 2: this method effec-
tively fixes in place the covariance structure implied by one’s
full model (e.g., the model of Fig. 1a). As a result, global fit in
the reduced model will not be altered by dropping model
variables, as in Approach 1, or by changing the model’s alge-
braic structure, as in Approach 2. Equally important, any ad-
justments for missing data made in estimating the full model
will remain intact when using the implied correlations to cal-
culate R2

Reduced from the reduced model.
For these reasons, the direct matrix approach to calculating

ΔR2 solves the problems encountered in Approaches 1 and 2.
The main drawback to this approach is that matrix manipula-
tions are not necessarily intuitive to most applied researchers
(particularly with larger matrices and more complex structural
models than that of Fig. 1a), and these calculations are not
currently implemented in standard SEM software packages.

To overcome this limitation, I have written and provided an R
function, rsquareCalc(), to be used in conjunction with the
lavaan package (Rosseel, 2012). The function takes as input
one’s estimated full model fit using one of lavaan’s built-in
functions – e.g., lavaan() or sem() – and character strings
listing the outcome variable of interest in the larger SEM
and which target variables from the full model are to be omit-
ted in calculating the reduced model. This function is provided
both in Appendix 2 and as an Online Supplemental file.
Additional function arguments are explained under
“Extensions” below.

With the aid of rsquareCalc(), lavaan users may well find
the direct matrix method for calculating ΔR2 the simplest
approach to implement. Not all researchers are proficient in
R or lavaan, however. For those who prefer other software
packages (e.g., Mplus), I describe an alternative saturated
correlates approach to specifying the reduced model that will
produce equivalent results to the direct matrix calculation ap-
proach without requiring users to engage in potentially error-
prone matrix calculations.

Approach 4: Specifying ξ2 as a saturated
correlate in the reduced model

Approach 3 succeeds where Approaches 1 and 2 fail by hold-
ing the implied covariance structure from the full model of

Fig. 1a constant when calculating R2
Reduced rather than altering

it by dropping model variables or imposing parameter con-
straints. By performing direct matrix calculations on the
model-implied correlations, the global fit of one’s full model
remains intact, and the influence of all full model variables on
estimation under missing data is implicitly accounted for in
the calculation of R2

Reduced . Direct matrix calculation of

R2
Reduced is not the only way to achieve these desirable out-

comes, however. Intuitively, any reparameterization of the
reduced model that retains all full model variables while hold-
ing constant the implied covariance structure and resulting
global fit should produce identical results.

One simple way to accomplish this in the running example
is to specify target predictor ξ2 as a saturated correlate (J. W.
Graham, 2003), as depicted in Fig. 1d. The saturated corre-
lates model was originally proposed by Graham (2003) as a
way of incorporating auxiliary variables (Collins et al., 2001)
– missing data helper variables necessary for accurate and/or
precise estimation under the MAR assumption but ancillary to
one’s substantive analysis – into FIML-estimated SEMs with-
out altering the interpretation of the model’s parameters. A
saturated correlate, like ξ2 in Fig. 1d, is specified to covary
with (a) all exogenous variables in a given structural model
and (b) all endogenous disturbances.

3 Note that the x variables in Rxx r½ � and rxy r½ � are x variables only in the
sense of being regression predictors; they do not have to be restricted to
the exogenous xmodel of the LISREL framework defined in Eq. (10) in
Appendix 1. The predictors chosen for Rxx r½ � may be exogenous in the
context of the larger model, endogenous in the context of the larger
model, or a combination of both. This last scenario might arise, for
example, if ξ1, ξ2, and η1 were all predictors of a more distal outcome,
say η2, in an extended version of Fig. 1a. In this extended model, the
unique contribution of ξ2 in explaining variance in η2 could be calcu-
lated by defining Rxx r½ � to include the model-implied correlations be-
tween exogenous ξ1 and endogenous η1, since both of these variables
would serve as predictors in the regression of interest.
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Correlating ξ2 with both ξ1 and ζ1 serves to saturate the
covariance matrix between ξ2 and other structural model var-
iables, leaving the global fit in the rest of the model un-
changed. Thus, the saturated correlates approach to specifying
the reduced model succeeds in preserving the implied covari-
ance structure from the full model, along with its implications
for global fit and missing data estimation, while reducing the
structural regression portion of the model to include one-
headed arrows only between the outcome variable and the
reduced model (non-target) predictors. Because the
amount of residual variance, var(ζ1), leftover after η1’s
prediction by ξ1 in Fig. 1d will necessarily differ from
the amount of residual variance leftover when η1 is
predicted by both ξ1 and ξ2 in Fig. 1a, one can calculate

R2
Reduced from the saturated correlates model using Eq.

(2) then proceed to calculate ΔR2 as usual via Eq. (1).
The primary advantages of this approach are (1) that it can

be implemented by users of any SEM software package (not
just lavaan) and (2) that it does not require direct matrix ma-
nipulation. The primary disadvantage of this approach is that
specifying all covariances between a given saturated correlate
and all other structural model predictors can be tedious in
models with many predictors, although syntax shortcuts in
some programs can simplify this task (e.g., x10 WITH x1-
x9 in a hypothetical model run in Mplus).4

Demonstrative simulation

The preceding discussion implies a set of predictions
concerning when Approaches 1–4 will produce accurate
results and when some of these methods may be biased.
Specifically, Approach 1, dropping target variable ξ2,
should produce accurate results when the model of
Fig. 1a is the true population model and the data are
complete but biased results when ξ2 is an important
cause of missing data on the other model variables.
Approach 2, constraining the ξ2 → η1 path to zero,
should produce biased results in any model in which
the ξ2→ η1 path is actually nonzero in the population,

regardless of whether the data are complete or missing.
Finally, Approaches 3 (direct matrix calculation) and 4
(specifying ξ2 as a saturated correlate in the reduced
model) should produce equivalent, accurate results re-
gardless of whether the data are complete or missing.
To test these predictions and establish proof of concept,
I conducted a focused Monte Carlo simulation in R (R
Core Team, 2013) using the lavaan package (Rosseel,
2012) to fit all structural models.

Data generation and simulation factors

I generated data for the simulation based on the full model of
Fig. 1a. I began by simulating the latent factors, ξ1, ξ2, and η1
as standard normal variates. Because the main simulation out-
come was the accuracy of each of the four approaches in
estimating R2

Reduced andΔR2, the first simulation factor varied
was the effect size of ΔR2. In a first set of simulation condi-
tions, I setΔR2 = .05, a relatively small effect size by Cohen’s
(1988) standards.5 In a second set of conditions, I set
ΔR2 = .13, a moderate effect size by Cohen’s standards.
Finally, in a third set of conditions, I set ΔR2 = .26, a large
effect size by Cohen’s standards.6 The structural parameters
set to obtain these values are listed in Table 1.

In addition to varying the effect size of the increment in R2

due to ξ2 in the latent variable model, I also varied the overall
sample size, simulating one set of conditions with a small
sample size of N = 100 and a second set of conditions with a
large sample size of N = 500. After generating the standard-
ized latent variables at a particular sample size, I simulated the
set of manifest indicators, x1–x8 and y1–y4. Across all simula-
tion cells, I set all factor loadings equal to λ = 0.61 and all
unique factor variances equal to (1 − λ2) = 0.63, resulting in
standardized manifest indicators and reliability of α = ω = .7
for each four-indicator factor model (Cronbach, 1951;
McDonald, 1999; McDonald & Ho, 2002).

For each unique simulation cell, I saved both a complete
dataset and a copy of the same dataset with approximately
50% missingness injected on indicators y1–y4 of η1 using a

4 As one reviewer wisely pointed out, in models consisting entirely ofmanifest
variables with missing data, the reduced model may be specified with all
saturated correlates listed under the AUXILIARY subcommand in Mplus
(Asparouhov & Muthén, 2008). Invoking the AUXILIARY subcommand
automatically fits a saturated correlates model without requiring the user to
write the syntax for the auxiliary portion of the model. This approach will not
work with latent variables, however, and including all manifest indicators as
saturated correlates will alter the model fit. In the model of Fig. 1, this ap-
proach would be tantamount to specifying both the common factor, ξ2, and all
unique factors loading onto its indicators as saturated correlates. By allowing
all parts (common and unique) of these indicators to correlate freely with all
other common and unique variables in the model, anyminor misfit incurred by
specifying the unique factors as conditionally independent would be lost, and
the resulting model parameter estimates would be liable to shift in unpredict-
able ways.

5 Cohen’s (1988) arbitrary cutoff for a small R2 effect size is, of course, .02,
but I opted to simulate the slightly larger value of .05 in order to obviate
potential floor effects and show more clearly the possible bias resulting from
attenuation of ΔR2 in some key simulation cells.
6 It is worth noting that because in each set of simulated conditions the indi-
cators of ξ2 would be used to inject missing data on the indicators of η1, as
described below, and because the relative biasedness resulting from a given
pattern of missing data under a MAR mechanism is a direct function of the
degree of correlation between the true cause of missing data, e.g., ξ2, and the
variable on which data are missing, e.g., η1 (with completely orthogonal
variables resulting in MCAR rather than MAR missing data; see Collins
et al., 2001; Enders, 2010; Little & Rubin, 1987), I adjusted the exogenous
correlation, rξ1ξ2 , in each condition instead of holding this parameter
constant in order to ensure that the correlation between ξ2 and η1 would
remain high enough to cause bias under missing data (rξ2η1≈:5 in all
conditions).
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missing data generating strategy based on the MAR sinister
mechanism described by Collins, Schafer, and Kam (2001).7 I
chose this type of mechanism because it is specifically de-
signed to inject bias in the correlation between two
variables, in this case ξ1 and η1, when the cause of
missing data (the ξ2 measurement model) is omitted
from the model. If rξ2η1 is biased by missing data, then

R2
Reduced ¼ r2ξ1η1 will be correspondingly biased, affecting

the estimate of ΔR2 calculated using Eq. (1).
To adapt Collins et al.’s (2001) MAR sinister mechanism

to the model of Fig. 1a, I first formed sum score composites
for each simulated set of exogenous indicators. Let xC1 ¼ x1
þx2 þ x3 þ x4 be the sum score composite for the indicators
of ξ1 and xC2 ¼ x5 þ x6 þ x7 þ x8 be the sum score composite
for the indicators of ξ2. Then, following Collins et al. (2001), I
split the dataset into N/10 random groups (10 groups of 10
individuals in the N = 100 conditions and 50 groups of 10
individuals in the N = 500 conditions, respectively). In each
random subgroup, I computed the correlation between the
exogenous composites, rxC1 xC2 and sorted the groups from

the highest to lowest values of rxC1 xC2 . In the half of the ran-

dom subgroups that exhibited the highest correlations, rxC1 xC2 ,
I randomly deleted 80% of the values of y1–y4. In the half of
the random subgroups that exhibited the lowest correlations,
rxC1 xC2 , I randomly deleted 20% of the values of y1–y4. Under
this mechanism, individuals with the highest observed corre-
lations between xC1 and xC2 were more likely to be missing on
y1–y4 than individuals with the lowest correlations between
xC1 and xC2 . As a result, the correlation between ξ1 and η1,
rξ1η1 should be attenuated when ξ2 is dropped from the model

under Approach 1, resulting in an inflated estimate of ΔR2

when computed using the difference defined in Eq. (1).
In sum, the simulation consisted of a fully crossed 2 (sam-

ple size: N = 100 vs. N = 500) ×3 (effect size: ΔR2= .05, .13,
or .26) design with six unique simulation cells. Replicating
each cell 1000 times yielded 6000 unique datasets, each saved
twice – once with complete data and once with missing data
on y1–y4. With four approaches to calculating the target R2

metrics, this yielded 6000 × 2 × 4 = 48,000 different analyses.

Simulation analyses and outcomes

I computed R2
Full, R

2
Reduced , andΔR2 according to Approaches

1–4 using the lavaan package (Rosseel, 2012) to estimate all
models. I specified the reduced models for Approaches 1, 2,
and 4 according to the path diagrams depicted in Fig. 1b–d,
respectively. I implemented Approach 3 (direct matrix calcu-
lation) using the rsquareCalc() function described above, pro-
vided in Appendix 2. For all models fit to datasets with miss-
ing data, I implemented FIML estimation by invoking the
argument missing = “fiml” in the sem() function in lavaan.
The primary simulation outcomes were the average estimates
of R2

Reduced and ΔR2 calculated from each approach in each
unique simulation cell.

Simulation results and discussion

Table 2 displays the results of the simulation. The top half of
Table 2 displays the results for theN = 100 (small sample size)
conditions, while the bottom half of Table 2 displays the re-
sults for the N = 500 (large sample size) conditions.
Examining the table, several trends are clear. First, unsurpris-
ingly, all methods performed better in larger samples (N =
500) than in smaller samples (N = 100). To assess the perfor-
mance of each approach, begin by examining the rows of
Table 2 corresponding to Approach 1, in which the measure-
ment model for ξ2 is dropped in the reduced model. Across

7 The decision to inject an arbitrarily high missing data rate (50%) in the
simulation was based on the simple goal of providing a clear, stark demon-
stration of the effects of missing data on the model parameter estimates.
Because the influence of missing data percentage is straightforward and well
known, with higher percentages of missing data resulting in more severe
parameter bias, and because this factor was not the focus of the present study,
I opted not to simulate additional conditions. However, it bears emphasizing
that, as shown by Collins et al. (2001), lower rates of missing data (e.g., 25%)
can also result in harmful amounts of parameter bias.

Table 1 Population values for the
structural model used in the
simulation by effect size
condition

ΔR2Effect size

Small Medium Large

rξ1ξ2 .7 .3 .05

γ=γ1=γ2 .31 .38 .51

R2
Full .33 .37 .55

R2
Reduced ¼ r2ξ1η1 .28 .24 .29

ΔR2 .05 .13 .26

Note: all latent variables were standardized such that var(ξ1) = var (ξ2) = var (η1) = 1. For convenience, both
structural regression parameters were set equal to each other
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effect sizes and missing data mechanisms, there is a clear
pattern: Approach 1 generally produces accurate estimates of

bothΔR2 and R2
Reduced (R

2
ξ1
in the tables) under complete data,

but biased results under missing data. As expected, dropping
the ξ2 measurement model from the reduced model resulted in
attenuated estimates of R2

ξ1
and magnified estimates of ΔR2.

Examining the rows of Table 2 corresponding to Approach
2, in which the ξ2→ η1 path is constrained to zero, there is
evident bias in the majority of simulation cells. First, restrict
your attention to the analyses of complete data. Because ξ2 is
forced to correlate with η1 only indirectly through ξ1, the
structural coefficient, γ, becomes inflated in the reduced mod-

el, resulting in inflated estimates of R2
ξ1

and shrunken esti-

mates of ΔR2 under complete data.
Turning to the Approach 2 analyses under missing data, recall

that because the ξ2→ η1 path is left out of this model, the full
correlation between ξ1 and η1 is not accounted for in this model,
and FIML estimation is unable to adjust for bias due to missing
data as effectively as it would if ξ2 was specified as a saturated
correlate. The correlation-attenuating nature of the missing data
mechanism used in the simulation somewhat counteracts the
biasing effects of constraining the ξ2→ η1 path to zero: whereas
this overidentifying constraint tends to exert pressure toward
inflating rξ1η1 ; the correlation-attenuating missing data mecha-
nism tends to exert pressure toward deflating the very same
correlation. As a result, on the surface, the estimates of ΔR2 in
some of these cells do not appear severely biased despite the very
real biasing pressures exerted by both the model misspecification
and missing data mechanism.

Finally, both the direct matrix approach and the saturated
correlate approach produce identical, generally accurate re-
sults across all cells of the simulation, with only minor shifts

in the estimates of ΔR2 and R2
ξ1

under 50% missing data,

regardless of mechanism. This general pattern of results was
approximately the same in the N = 500 as in the N = 100
conditions, with the caveat that all estimates at this lower
sample size were somewhat less accurate, on average, and this
was particularly so under 50% missing data (i.e., with only N
= 50 complete cases on y1–y4).

Extensions

Having demonstrated the accuracy (and equivalence) of the
direct matrix and saturated correlates approaches to calculat-
ing ΔR2, it is possible to envision a series of straightforward
extensions to these methods. In the sections that follow, I
describe how these approaches can be extended to multiple-
group models, to models with dichotomous or ordinal y vari-
ables, to models with dichotomous predictor variables, and to
changes in adjusted R-squared statistics as well the issue of
obtaining confidence intervals for the ΔR2 effect size.
Throughout, I attempt to keep the content readable and digest-
ible. However, some of the material covered in these sections
is, admittedly and somewhat unavoidably, more technical
than the material covered in the first half of this paper. For
this reason, readers who are uninterested in a particular exten-
sion (e.g., those who have continuous outcomes and do not

Table 2 Average simulation results by condition

Small effect size Moderate effect size Large effect size

ΔR2=.05 R2
ξ1
¼ :28 ΔR2=.13 R2

ξ1
¼ :24 ΔR2=.26 R2

ξ1
¼ :29

Complete Missing Complete Missing Complete Missing Complete Missing Complete Missing Complete Missing

Approach: N = 100

1. Drop 0.08 0.15 0.30 0.29 0.14 0.20 0.26 0.24 0.27 0.33 0.30 0.26

2. Constrain 0.03 0.08 0.35 0.36 0.10 0.15 0.30 0.29 0.24 0.31 0.33 0.28

3. DM 0.08 0.12 0.29 0.32 0.14 0.16 0.26 0.28 0.27 0.28 0.30 0.31

4. Sat Cor 0.08 0.12 0.29 0.32 0.14 0.16 0.26 0.28 0.27 0.28 0.30 0.31

N = 500

1. Drop 0.05 0.09 0.29 0.26 0.13 0.18 0.24 0.20 0.26 0.32 0.29 0.23

2. Constrain 0.00 0.02 0.34 0.33 0.09 0.14 0.29 0.24 0.23 0.31 0.32 0.25

3. DM 0.05 0.06 0.29 0.29 0.13 0.14 0.24 0.25 0.26 0.26 0.29 0.29

4. Sat Cor 0.05 0.06 0.29 0.29 0.13 0.14 0.24 0.25 0.26 0.26 0.29 0.29

Note: ΔR2 indicates the difference in R2 between a model that includes both predictors, and a model that only includes ξ1, R2
ξ1
indicates the R2 in a

reduced structural model that only includes ξ1, (that is, R2
Reduced ), Drop indicates a model in which the entire factor model for ξ2 is dropped from the

model as in Fig. 1b, Constrain indicates a model in which the structural path from ξ2 to η is constrained to zero as in Fig. 1c, DM indicates direct matrix
calculation ofΔR2 using the full model-implied correlationmatrix generated by the full model of Fig. 1a, and Sat Cor indicates a model in which the ξ2 is
specified as a saturated correlate as in Fig. 1d
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currently need to address ΔR2 with dichotomous y variables,
or those who are comfortable with SEM as a large
sample framework and who, therefore, do not particu-
larly care about extending these methods to adjusted R2

values, etc.) may skip over any of the sections that
follow with only minimal loss of continuity.

Multiple-group models

Both the direct matrix and saturated correlates approaches can
be easily extended to multiple-groupmodels. The only change
required is to apply the method – either the direct matrix
calculations or the saturated correlates specification of the
reduced model – within each independent group. To aid in
these computations, the function rsquareCalcMG(), described
in Appendix 3 and provided in the Online Supplemental .R
file, extends the basic calculations from the rsquareCalc()
function to multiple group SEMs.

R-squared change in SEMs with dichotomous and
ordinal outcomes

The focus of this article has primarily been on extendingΔR2

to structural regression models featuring continuous latent or
manifest outcome variables. Yet, if one is willing to adopt a
latent probit or logit model, assuming an underlying continu-
ous latent variable with thresholds defining the discrete ob-
served values (as described in Long, 1997; and implemented
in Mplus, see L. K. Muthén & Muthén, 2017; and lavaan, see
Rosseel, 2012), then the approaches described in this article
could, in theory, be applied with minimal adjustment. For
example, imagine a legal psychology study in which a key
outcome is jurors’ guilty (y = 1) vs. not guilty (y = 0) verdicts.
If one assumes a continuous, latent y∗ variable underneath this
dichotomous outcome, representing jurors’ internal judg-
ments of a defendant’s guilt, and a threshold representing a
latent tipping point (e.g., beyond a reasonable doubt) after
which jurors’ observed decision would switch from not guilty
(0) to guilty (1), then the methods described so far may
adapted to obtain R-squared change on the metric of this un-
derlying latent propensity to render a guilty verdict (y∗).
Although a thorough tutorial in latent variable formulations
of dichotomous and ordinal outcomes is far beyond the scope
of this paper, I sketch the relevant details below as they apply
to computing ΔR2 in the hope that they will be informative
and helpful to readers already familiar with these models.
Readers whose primary interests lie in methods for continuous
outcomes may skip this section without loss of continuity.

The main difference between continuous and categorical
(dichotomous, ordinal) outcome models comes in computing
R2
Full and R

2
Reduced . With dichotomous or ordinal outcomes, R2

may be computed on the metric of the underlying latent

variable as the ratio of the predicted variance to the total var-
iance, with the total variance calculated as the sum of the
predicted variance and a fixed residual variance set either to
1 in the probit framework or to π2/3 in the logit framework (for
details, see Bauer, 2009; Long, 1997; McKelvey & Zavoina,
1975). Luckily, Mplus performs these transformations and
automatically outputs latent R2 values for all dichotomous
and ordinal outcomes when a user requests stdyx standardiza-
tion. Similarly, the lavaan package will also perform these
computations with a dichotomous or ordered outcome
when a user sets rsquare = TRUE in either the summa-
ry() or parameterEstimates() functions, although missing
data handling for categorical outcomes is currently un-
available in lavaan.

When the data are complete, computing ΔR2 using the
direct matrix approachwith a dichotomous or ordinal outcome
may easily be accomplished using lavaan in conjunction with
the rsquareCalc() function described in Appendix 2, but with
one small change: the user must set the argument
conditional.x = FALSE in the function used to fit the ordinal
outcome model (e.g., the lavaan or sem function). By default,
this argument is set to TRUE, resulting in a conditional spec-
ification of the model that treats exogenous predictor variables
as fixed and omits them from the model-implied covariance
matrix.8 Setting conditional.x = FALSE ensures that all pre-
dictor variables will be included in the final model matrices
such that these can be extracted from the fit object and direct
matrix computation can proceed as usual.

Computing ΔR2 using the saturated correlates approach
involves the added difficulty of correlating predictor variables
with the fixed residual of an underlying latent y∗ variable.
When the data are complete and the user adopts the latent
probit framework using WLSMV estimation in Mplus, the
reduced model can be specified using the saturated correlates
approach with no need for further changes. When there are
missing data, however, and the user wishes to switch to a full
information estimator in Mplus, specification of the reduced
model becomes trickier. Users hoping to address missing data
in the logistic regression framework typically invoke
ESTIMATOR = ML in Mplus. However, this estimator does
not allow for another variable to be correlatedwith the residual
of the latent y∗ variable.

A viable solution to this problem involves two changes to
specifying the reduced model: (1) switch to the latent probit
framework implemented using ESTIMATOR = BAYES,
which allows more flexible specification of residual covari-
ances, and (2) switch from a saturated correlates approach to
specifying the reduced model (which produces an inadmissi-
ble covariance structure using default Bayesian estimation

8 For further details on the conditional.x argument, see the lavaan
package documentation as well as Yves Rosseel’s responses on this Google
group thread: https://groups.google.com/g/lavaan/c/EWqFQO3FZds?pli=1.
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settings in Mplus) to Graham’s (2003) other method for in-
corporating auxiliary variables into an analysis: the extra DV
model. Note that the switch to Bayesian estimation is simply a
means to the end of getting Mplus to compute the reduced
model and, therefore, ΔR2. Because the resulting estimate of
ΔR2 will be the same as it would have been using frequentist
estimation, if only such an option were possible, researchers
may report this effect size in conjunction with their full model
results, regardless of whether they chose to fit the full model in
the Bayesian or the frequentist framework.

To illustrate this approach to the reduced model,
briefly consider a scenario in which a researcher is
predicting a dichotomous or ordinal outcome variable,
y, from two predictor variables, x1 and x2, in a full
model and wishes to obtain the ΔR2 that occurs when
x2 is added into the model. The full model is easily
specified in Mplus, but the reduced model is substan-
tially trickier. Figure 2a and b depicts the extra DV
approach to this task. In the extra DV model (Graham,
2003), all auxiliary variables (in this case, x2) are
regressed on the exogenous predictors (in this case,
x1), and their residuals are allowed to covary with the
residuals of all model outcome variables. This model
captures the covariances between the exogenous predic-
tors and auxiliary variables using regressions (ON state-
ments in Mplus) rather than exogenous covariances
(WITH statements in Mplus) but is otherwise identical
to the saturated correlates model and produces identical
results. Figure 2a displays the statistical model, whereas
Fig. 2b displays the same model with the relevant
Mplus model syntax superimposed in place of the mod-
el parameters. For more details and example code, see
the Online Supplemental Materials.

R-squared change in SEMs with dichotomous and
ordinal predictors

The preceding section described how to extend both the direct
matrix and saturated correlates approaches to models with
dichotomous or ordinal outcomes. But what about models
with dichotomous predictors? For example, it is extremely
common for researchers to assess theΔR2 caused by a dichot-
omous experimental treatment variable (0 = control, 1 = treat-
ment) above and beyond some set of control variables.
Assessing ΔR2 due to a dichotomous predictor is no trouble
in context of standard OLS regression. But what about models
with latent variables and/or missing data, as described here?

Unfortunately, dealing with dichotomous predictors is not
always so straightforward in SEMs. The reasons for this are
somewhat technical, but I will describe them here in brief. As
described above, with dichotomous outcome variables, SEM
analyses assume that the dichotomous variable is simply a
coarse manifestation of a normally distributed latent variable,
y∗. But standard regression models treat dichotomous predic-
tor variables as is. This makes intuitive sense: researchers
including a dummy-coded variable indicating experimental
treatment, for example, are not interested in modeling a latent
y∗ propensity to receive treatment; they want to model the
variable as an explicit, manifest predictor that yields an esti-
mate of an explicit, manifest treatment effect.

Because it is impossible for manifest dichotomous predic-
tors to be normally distributed, SEM software packages like
Mplus and lavaan treat these predictors as fixed quantities that
are excluded from the multivariate normal likelihood function
invoked when using ML or FIML estimation to fit a model.
When a predictor is declared as having a mean and variance
and, more importantly, as explicitly covarying with other

Fig. 2 Extra DV approach to specifying the reduced model with a
dichotomous or ordinal outcome: (a) Conceptual/statistical model. (b)
Model with superimposed Mplus commands. Note that this model must

be specified in the latent probit framework with ESTIMATOR =
BAYES, as depicted in the box in the upper right-hand corner of panel b.
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predictors and outcomes in the model, the behind-the-scenes
computations employed in Mplus and lavaan surreptitiously
respecify these predictors as single indicator latent variables.
This brings the variables into the multivariate normal likeli-
hood function and treats them as random rather than fixed
quantities.

For continuous predictors, this poses no problem. But for
dichotomous predictors, this creates serious issues. Not only is
this a violation of the normality assumption, it generally leads
to convergence problems that frequently cause a user’s mod-
el to crash. As such, the saturated correlates model
above breaks down in models with dichotomous predic-
tors, as will the single indicator latent variable methods
previously proposed in the literature by Preacher (2006)
and de Jong (1999).

Fortunately, the direct matrix method will work regardless
of the scaling of a given target predictor (or set of predictors).
The direct matrix approach can incorporate dichotomous pre-
dictors just as well as OLS regression methods can because
this approach simply borrows matrix formulas from OLS re-
gression and extends them to more complex SEMs that may
contain latent variables, missing data, or both. If all predictors
contain complete or nearly complete data, such that one is
willing to treat the predictors as fixed, the direct matrix ap-
proach can be used as is with the R functions provided in
conjunction with the lavaan package. With substantial
amounts of missing data on the exogenous predictors, howev-
er, it may be advisable to switch from FIML to multiple im-
putation (Rubin, 1987) for missing data handling. If so, the
filled-in predictors may still be treated as fixed in the analyses
conducted on each imputed dataset. In such a case, the point

estimate of ΔR2 would simply be the average of the ΔbR2

estimates obtained by applying the provided rsquareCalc()
function to each imputed dataset. If the imputed data
sets are each stored as elements in a list object in R,
for example, this may easily be accomplished using the
lapply() function with only minimal post-processing re-
quired to average the estimates.

Change in adjusted R-squared

Maximum likelihood estimation and FIML for missing data
are both derived from asymptotic theory under the assumption
of large sample sizes. For this reason, standard SEM packages
output R2 values but not adjusted R2 values. That is, SEM
software packages compute R2 values for each endogenous
outcome using the formula fromEq. (2), with both the residual
and total outcome variances implicitly computed as their re-
spective sums of squares divided by the sample size, N. In line
with standard SEM packages, the direct matrix and the satu-
rated correlates approaches described above and tested in the
demonstrative simulation follow this same convention.

However, it is well known that R2 is a biased estimator of
its true population quantity that only increases as additional
predictors are added to the model, lending itself to overfitting
the observed sample data (Cohen et al., 2003; Pedhazur,
1997). To counteract this tendency, OLS regression textbooks
recommend the use of the adjusted (shrunken) R-squared,
R2
Adj, rather than its unadjusted counterpart. In contrast to the

unadjusted R2, R2
Adj is an unbiased estimator that imposes a

penalty for adding additional noisy predictors into the model
that explain little or no variance in the outcome. The
penalty imposed becomes more severe as the sample
size becomes smaller and the number of predictors in-
cluded in the model becomes larger.

Despite the norm of obtaining unadjusted R2 values from
SEM software programs, there is no reason, in principle, why
a user could not tweak the procedures described above in
order to compute R2

Adj in place of the unadjusted R-squared

values assumed so far and compute ΔR2
Adj in place of ΔR2.

This is easily accomplished, as R2
Adj can be written in terms of

the unadjusted estimate, bR2
, already provided by SEM soft-

ware via the formula:

R2
Adj ¼ 1−

N−1
N−p−1

� �
1−bR2

� �
ð7Þ

where N is the sample size, and p is the number of predictors
(x variables) in the structural regression model of interest.
With complete data and manifest variables, this calculation
will exactly reproduce the adjusted R2 values output by stan-
dard OLS regression programs. With complete data and latent
variables, this calculation will yield an estimate of the adjusted
R2 value that would have resulted from an OLS regression
conducted on perfectly measured, error-free manifest mea-
sures of these same constructs. Given that perfect measure-
ment (particularly of the predictor variables) is a tacit assump-
tion of the OLS regression methods typically used to compute
R2
Adj (see Cohen et al., 2003; Pedhazur, 1997), applying this

metric to structural regressions among error-free latent vari-
ables seems intuitively reasonable.

Models fitted using FIML estimation under missing data
raise an interesting question about the value of N that should

be used in computing R2
Adj in Eq. (7). When missingness is

intermittent, each variable in a larger structural model may
have a different complete data N, and the pattern of missing
data may exert differential effects in different parts of the
larger model. Which N is the most valid one to use in com-

puting R2
Adj ? One obvious choice would be to use the overall

N used in the analysis. FIML computes the overall likelihood
for a given model in a case-wise manner, incorporating all
cases with data on even one model variable in the likelihood
computation (Enders, 2010). As a result, the overall N used in

Behav Res (2021) 53:2127–2157 2139



a FIML analysis represents the number of cases with partial
data on any variable or combination of variables.

This choice of N is certainly intuitive and defensible and

results in an estimate of R2
Adj equivalent to one calculated

using multiple imputation methods. In multiple imputation,
pooled parameter estimates are calculated as simple averages
of their values calculated in each imputed dataset (Little &
Rubin, 1987; Rubin, 1987). With M imputed datasets, the

pooled estimate of R2
Adj, R

2
Adj, can be shown, via simple expec-

tation algebra, to be:

R
2

Adj ¼ E 1−
N−1

N−p−1

� �
1−bR2

m

� �� �

¼ E 1−
N−1

N−p−1

� �
−

N−1
N−p−1

� �bR2

m

� �� �

¼ E 1ð Þ− E
N−1

N−p−1

� �
−E

N−1
N−p−1

� �bR2

m

� �� �

¼ 1−
N−1

N−p−1

� �
−

N−1
N−p−1

� �
E bR2

m

� �� �

¼ 1−
N−1

N−p−1

� �
−

N−1
N−p−1

� �
R
2

� �

¼ 1−
N−1

N−p−1

� �
1−R

2
� �

where bR2

m is the estimated R2 value from the mth imputed

dataset, R
2
represents the pooled estimate of R2 averaging

across all M imputed datasets, and N represents the complete
data sample size after missing values have been filled in dur-
ing the imputation phase. Because it is well known that the
pooled estimates from multiple imputation are equivalent to
the estimates produced by FIML estimation under the same
model (for a discussion, see Collins et al., 2001) and because
the filled-in N in each imputed dataset will be the same as the
total N used in a FIML analysis, it is clear that using
the total N under FIML will produce values of R2

Adj

equivalent to those that would be obtained under the
same model using multiple imputation.

An alternative choice for N may be derived from the frac-
tion of missing information (FMI, Rubin, 1987). The FMImay
be interpreted as the proportion of the missing data sampling
variance caused by missing data uncertainty (manifested, for
example, as variance in the parameter estimates across imput-
ed datasets when using MI). Though traditionally implement-
ed in the multiple imputation framework, the FMI can also be
calculated using FIML estimation (Savalei & Rhemtulla,
2012), and this metric is output upon request for all parameter
standard errors in given model in the lavaan package. For any
given parameter estimate, the FMI may be used to calculate
the effective sample size, NEff (Savalei & Rhemtulla, 2012),
using the formula:

NEff ¼ N � 1−FMIð Þ: ð8Þ

The effective N can be interpreted as the complete data N
that would have resulted in a standard error of the same mag-
nitude as the missing data standard error (Savalei &
Rhemtulla, 2012). Because standard errors tend to become
inflated under missing data, NEff is generally considerably
smaller than the nominal N in a given analyses, making
NEff a more conservative value than N to be used in

calculating R2
Adj using Eq. (7).

However, because NEff varies by parameter, there may be
multiple effective sample sizes at work in a single FIML-
estimated model, making it difficult to know which value of
NEff to choose. The calculation of R2 in Eq. (1) involves the
ratio of the residual outcome variance to the total outcome
variance, which encompasses both the residual variance and
the predicted variance due to all regression pathways in the
model. With this in mind, one particularly conservative strat-
egy would be to calculate NEff for the residual outcome vari-
ance and for all structural regression pathways to the outcome
in a given model and choose the lowest value of NEff obtained
to in place of N in Eq. (7). By using the smallest effective
sample size value in place of N in Eq. (7), the adjustment term

incorporated in R2
Adj will impose a harsher penalty on the in-

clusion of extra predictor variables in models with population
ΔR2 values at or close to zero.

The rsquareCalc() function described in Appendix 2 in-
cludes optional arguments that perform the calculations de-

scribed in this section. If adj = TRUE, R2
Full and R2

Reduced are
replaced by their adjusted counterparts. By default, the calcu-
lations are performed on the total N used in the analysis. If
effN = TRUE, the function calculates the NEff for each
regression coefficient and for the residual outcome var-
iance and uses the lowest value of NEff to compute the
adjusted R2 values.

Obtaining confidence intervals for ΔR2

If one’s goal is simply to compute a point estimate ofΔR2 or

ΔR2
Adj, the methods described above are all that are needed.

However, as with any effect size metric, it is good practice to
compute and report a confidence interval (CI) forΔR2. Olkin
and Finn (1995) analytically derived formulas for asymptotic
CIs for R2 values and their differences (see also, Cohen et al.,
2003, p. 88). Unfortunately, multiple simulation studies have
found the performance of these asymptotic CIs to be lacking
in all but exceptionally large samples with normally distribut-
ed data (see e.g., Algina et al., 2007; Chan, 2009). As a result,
multiple authors have suggested switching from asymptotic
CIs to empirically derived CIs using bootstrap resampling
methods (Efron & Tibshirani, 1993). Although multiple ex-
tensions of bootstrap CIs have been proposed, I focus here on
the three types of bootstrap CIs available in Mplus and lavaan.

Behav Res (2021) 53:2127–21572140



When requested, both Mplus and lavaan compute standard
errors and confidence errors using a nonparametric bootstrap
procedure that resamples N rows of the dataset with replacement
B times creating B bootstrap datasets, where B is the number of
bootstrap samples, typically 1000 or more. The user-specified
model is then fitted to each of the B bootstrap datasets, and the
parameter estimates are saved. In the current context, the param-
eter estimate of interest is ΔR2 or ΔR2

Adj. For the remainder of

this discussion, I use ΔR2 rather than ΔR2
Adj, but the procedure

applies equally well to both statistics. LetΔbR2

b be the estimate of

ΔR2 computed on the bth bootstrap dataset and let ΔbR2
be the

estimate from the original sample data, before resampling. The
bootstrap standard error, SEB, is simply calculated as the stan-

dard deviation of the bootstrap estimates, ΔbR2

b. With the boot-
strap standard error in hand, analysts can easily compute the
standard error-based [(1 −α) × 100]% bootstrap confidence
interval (BCI) as:

BCI ¼ ΔbR2
−z 1−α

2ð ÞSEB;ΔbR2
þ z 1−α

2ð ÞSEB

� �
ð9Þ

where z(1−α/2) is the (positive) z-score critical value separating
the top α/2 proportion of a standard normoral distribution from
the lower 1 −α/2 proportion of the distribution (see Chan, 2009;
Efron & Tibshirani, 1993; Zhang et al., 2010). For a standard
95% CI, z(1−α/2) = 1.96.

As is clear from Eq. (9), the BCI employs the empirically
derived bootstrap standard error, SEB, but still relies on standard
normal distribution quantiles. The two alternative bootstrap ap-
proaches provided by Mplus and lavaan do not rely on the nor-
mal distribution theory. The first approach is the percentile boot-
strap confidence interval (PB, Efron, 1981; Efron & Tibshirani,
1993), formed as the interval between the bootstrap estimates
separating themiddle [(1−α) × 100]%of the empirical bootstrap
sampling distribution from the remaining [(α/2) × 100]% of the
distribution in each tail. The second approach is the bias-
corrected boostrap confidence interval (BC) which applies a
correction for instances in which substantially more or substan-
tially fewer than 50% of bootstrap samples lie at or below the

sample estimate, ΔbR2
(for computational details, see Efron,

1981, 1987; Efron & Tibshirani, 1993),
The performance of bootstrap CIs forΔR2 and related quan-

tities has been assessed in multiple simulation studies. Algina,
Keselman, and Penfield (2007) found that PB confidence inter-
vals forΔR2 outperformed asymptotic CIs in terms of coverage
in a variety of conditions so long asΔR2 > 0, evenwith relatively
small sample sizes of 200 or less. Expanding on this work, Chan
(2009) found that asymptotic CIs performed well in terms of
coverage and bias only with normal data but that BCIs and CIs
computed using the PB and BCmethods all performedwell with

both normal and non-normal data, except when R2
1 ¼ R2

2 ¼ Δ

R2 ¼ 0. Interestingly, Chan also found that the BCI and PB
methods performed just as well as the more complicated BC
approach and the accelerated BC approach proposed by Efron
(1987). Zhang, Preacher, and Luo (2010) obtained similar results
in a simulation comparing the BCI, PB, BC, and accelerated BC
methods for computing confidence intervals for factor loadings
and factor correlations in exploratory factor analysis (EFA)
models. These authors found that the BCI and PB methods per-
formed the best across conditions in terms of coverage, with the
BC and accelerated BC methods sometimes performing poorly
due to overcorrecting the bootstrap CI when the sample estimate
of a given statistic was far from the median of the bootstrap
sampling distribution.

Taken together, these studies suggest that bootstrap stan-
dard errors and CIs are a valid, if computationally intensive,
method for constructing confidence intervals for ΔR2 in re-
gression and structural equation models. The performance of
bootstrapping in conjunction with FIML-estimated SEMs is
also well validated (see Enders, 2001; Wu & Jia, 2013), mak-
ing these methods particularly useful in the present setting.
For R users, bootstrap standard errors and CIs can be easily
obtained via the direct matrix approach using the
rsquareCalc.Boot() function described in Appendix 4 and
demonstrated in the online supplemental material. By default,
the function computes bootstrap standard errors and a confi-
dence interval forΔR2 using the PB method, although the BC
method may also be requested instead via an optional argu-
ment. The function can also compute these same standard

errors and confidence intervals for ΔR2
Adj using either the full

sampleN or the effectiveN, both with or without missing data.
For Mplus users wishing to compute a confidence interval for

ΔR2, the task is not quite as simple. AlthoughMplus can compute
bootstrap standard errors and provide confidence intervals using
either the PB or BCmethods, these options can only be employed
within a single model (e.g., within the full model or reduced mod-
el), whereas the method for computing ΔR2 described above in-
volves a difference between twomodels (i.e., between a fullmodel
and reduced model, specified using a saturated correlates or extra
DV approach). As such, users hoping to obtain bootstrap confi-
dence intervals forΔR2 fromMplus have no choice but to switch
to amethod for obtainingΔR2 from a singlemodel. Asmentioned
in the introduction, two such methods are Preacher’s (2006)
single-indicator latent variable method, which is appropriate for
computing the change in R-squared in a continuous outcome
due to a single predictor variable, and de Jong’s (1999) latent
Cholesky decomposition method, which is appropriate for com-
putingΔR2 due to any number of predictors in models with con-
tinuous, dichotomous, or ordinal outcomes.9

9 Although the focus of this paper has been on implementing these methods in
a frequentist framework, Mplus may also be used to obtain 95% credible
intervals for ΔR2 in conjunction with these same methods when a user sets
ESTIMATOR = BAYES.
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Given the necessity of switching to an alternative method in
order to compute a confidence interval for ΔR2 in Mplus, one
may wonder if the saturated correlates approach to computing

R2
Reduced adds any value above and beyond these methods. I

argue that the answer is yes, for two important reasons. First,
analysts whose goal is simply to compute a point estimate of the
ΔR2 effect sizemay do so quickly and easily using the saturated
correlates approach. Second, and relatedly, even if one wishes
to ultimately switch to either Preacher’s (2006) or de Jong’s
(1999) methods in order to obtain a confidence interval for
ΔR2, computing ΔR2 first using the simple, intuitive saturated
correlates approach can provide an important check against
which to compare the estimate of ΔR2 obtained from either of
these more complex approaches.

As mentioned in the introduction, both Preacher’s (2006) and
de Jong’s (1999) methods involve a substantial amount of model
syntax that must be specified correctly in order to obtain a valid
estimate of ΔR2. Because the syntax for these models is some-
what intricate, the potential for user errors in specifying these
models is fairly high compared to the much simpler and less
potentially error-prone approach of computingΔR2 as the simple
difference between the full and reducedmodels. ComputingΔR2

using the saturated correlates approach described above before
attempting to code either Preacher’s (2006) or de Jong’s (1999)
methods affords the critical advantage of knowing the correct
answer in advance. If the point estimate of ΔR2 obtained from
Preacher’s (2006) or de Jong’s (1999) method matches the esti-
mate previously computed using the saturated correlates ap-
proach, one can be confident that their model syntax is correctly
specified and the resulting bootstrap standard error and confi-
dence interval are trustworthy. But if these estimates differ, the
model results should not be trusted, and the model syntax should
be reexamined and debugged.

In this way, the simple method described in this paper can be
helpful to researchers even when they decide to ultimately go on
to implement the more complex model specification approaches
proposed by Preacher (2006) and de Jong (1999). To help re-
searchers even further in their attempts to specify these compli-
cated models correctly, Online Supplemental Appendices A–D
describe and explain Preacher’s (2006) and de Jong’s (1999)
methods, respectively, in a step-by-step manner designed to be
accessible to applied researchers with a basic knowledge of
SEM. The supplemental materials also provide detailed, annotat-
ed path diagrams for each model, along with example data and
syntax (.inp files) for these models in Mplus.

General discussion

Researchers wishing to make incremental validity claims are
often advised to switch from observed variable regression
models to latent variable models estimated in the SEM

framework. Yet, until now, the literature has provided surpris-
ingly little guidance concerning how to compute the associated
ΔR2 effect size in these models. Using the model of Fig. 1a as a
template, this article described four approaches to calculatingΔR2

in SEMs with latent variables and missing data and illustrated
these approaches in a demonstrative simulation before describing
a series of extensions to Approaches 3 and 4. The first two ap-
proaches to specifying the reduced model – dropping the ξ2 mea-
surement model or constraining the ξ2→ η1 path to zero – are
unsatisfactory under a wide array of circumstances, particularly
(but not only) when there are missing data. The second two ap-
proaches, direct matrix calculation and the saturated correlates
approach, are algebraically equivalent and produce accurate results
in latent variable models both with and without missing data. This
implies a clear set of recommendations: researchers should gener-
ally avoid using Approach 1, particularly under missing data.
Approach 2 should never be used, since it involves a fundamen-
tally misspecified reduced model that will virtually never provide
accurate results. Instead, researchers who wish to compute ΔR2

should do so either using direct matrix calculations or using the
saturated correlates approach to specifying the reduced model.

Researchers who prefer conducting SEM analyses using the
lavaan package in R can easily calculateΔR2 orΔR2

Adj using the

rsquareCalc() function provided in Appendix 2. The
rsquareCalcMG() function provided in Appendix 3 extends the
basic calculations to multiple-group models, and the
rsquareCalc.Boot() function provided in Appendix 4 computes

bootstrap standard errors and confidence intervals forΔR2 orΔ

R2
Adj for single-group models. The online supplemental materials

accompanying this article contain a set of examples demonstrat-
ing how to use each function under a variety of conditions.

For those who prefer other software packages, the saturated
correlates specification of the reduced model affords an easy

way to calculate R2
Reduced andΔR2 without the need to perform

cumbersome matrix calculations. In the context of larger SEMs
that may contain many simultaneous structural regressions, this
simply involves respecifying the target (manifest and/or latent)
predictors as saturated correlates in the particular structural re-
gression of interest. All other paths in the larger SEM (including
one-headed arrows from the target predictor(s) to other struc-
tural outcomes elsewhere in the model) may remain unchanged
from the full model.

One benefit of Approaches 3 and 4 is that anyminor misfit that
may exist in one’s full model is held constant when estimating
R2
Reduced using these approaches. In essence, once one settles on a

full model that exhibits acceptable (if not perfect) global fit, one is
implicitly staking a claim that the model is plausibly true – that
one’s model, as specified, represents a plausible causal structure
that could have given rise to the observed covariances (Bollen,
1989; Kenny, 1979; Pearl & Mackenzie, 2018; Wright, 1934).

By calculating R2
Reduced from the model-implied correlations, one

is effectively asking the question, “in a world in which this model
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was true, what would the reducedmodelR2 andΔR2 be?”That is,
“what is the increment in R-squared in the world implied by this
model?” Of course, to the extent that the model is at all
misspecified, one’s estimate of ΔR2 will be less accurate and,
potentially, less meaningful (or even meaningless, depending on
how far one’s specified model diverges from reality). This could
be seen as a limitation of these approaches, but this same limitation
is, of course, true with respect to every single parameter in every
SEMmodel, including the model R2 calculations routinely report-
ed by SEM software packages using Eq. (2).

Related to the issue of misfit, it is worth addressing an impor-
tant distinction: that between R2 effect size and SEM model fit.
Some readers (particularly those who are, perhaps, newer to
SEM methods) may wonder why one would not simply use
SEM fit indices to compare models like the full and reduced
models of Fig. 1a and b. After all, this is how SEM model
comparison is typically undertaken. If latent variable ξ2 provides
incremental validity over ξ1, could this not be demonstrated by
showing that a model that includes ξ2 provides significantly im-
proved fit compared to a model that excludes it?

The answer to this question has to dowith the nature of global
SEM model fit indices. Whereas the role of model-based effect
size measures like ΔR2 is to quantify the size of some positive
(nonzero) effect(s) in one’smodel, the sole role of SEMmodel fit
indices is to quantify the global misfit between the covariance
structure observed in one’s sample and the covariance structure
implied by a specified model. Holding constant sample size and
model complexity, such misfit is a function of two primary
sources: sampling variability (“estimation error”) and model
misspecification (“approximation error”, see Steiger, 2016). As
a result, if one could fit the true, correctly specified data-
generating model (such that approximation error is zero) to the
population-level data (such that estimation error is zero), the
model would fit perfectly regardless of the size of any particular
effect specified within the model.

In thisway,model fit indices fromcorrectly specified SEMs are
silent with respect to the effect sizes observed throughout a model.
Taken together, then, global model fit indices and model-based
effect size measures likeΔR2 each have their own unique roles to
play in the process of model evaluation. Model fit indices assess
the validity of the model as a whole – its plausibility as a structure
that could have generated the observed sample data – whereas
ΔR2 statistics assess of the size of key partial regression effects
within the model.

In summary, references on the topic of calculatingΔR2 in SEM
have been few and far between in the existing literature, despite the
obvious utility of this effect size metric in applied research (a
sentiment echoed by B. Muthén, 2017). I believe this work ad-
dresses several important gaps in the existing literature. Although,
as stated, Preacher (2006) and de Jong (1999) each previously
proposed different methods for obtaining ΔR2 from SEMs, to
my knowledge, the current paper is the first to describe
Approaches 1–4. Furthermore, neither Preacher (2006) nor de

Jong (1999) discussed ΔR2 in the context of missing data, and
neither author discussed the potential pitfalls of Approaches 1 and
2 to reduced model specification. This latter point is particularly
important because Approaches 1 and 2 are arguably the most
intuitive ways to conceive of specifying a reduced model, making
them the methods most likely to potentially be tried by real re-
searchers at the outset. As such, one important goal of this paper is
to raise awareness of the fatal shortcomings of these intuitive-but-
incorrect approaches in order to discourage their future use.

The present research also contributes to the literature by pro-
posing Approaches 3 and 4, which are arguably much more
straightforward to implement than Preacher’s (2006) and de
Jong’s (1999) methods and which map more directly onto how
most substantive and applied researchers likely conceptualize
ΔR2: as the difference in R2 values obtained from a full and
reduced model. The saturated correlates model of Approach 4 is
intrinsically simple to implement, whereas thematrix operations of
Approach 3 are rendered simple to implement with the aid of the
accompanying R functions. Finally, to my knowledge, the direct
matrixmethod ofApproach 3 is the only availableway to calculate

ΔR2 orΔR2
Adj in models including dichotomous predictors.

Nonetheless, to help readers who may wish to implement
Preacher’s (2006) or de Jong’s (1999) approaches – whether in
order to obtain standard errors and CIs from Mplus or other
software, or for any other reason – the online supplemental ap-
pendices accompanying this article provide a step-by-step expla-
nation of the logical rationale behind each method, as well as
comprehensive syntax files demonstrating each approach. The
source articles proposing these methods are written expertly,
clearly, and succinctly for a target audience of quantitative meth-
odologists. By contrast, the online supplemental appendices pro-
vided with this paper are targeted toward making these methods
digestible and understandable for an applied audience. It is my
hope that the approaches described in this article, in concert with
the R functions provided in the appendices and the extensive
online supplemental material, will prove useful for conscientious
researchers hoping to report more focused measures of R2 effect
size targeting their key predictor(s) of interest.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13428-020-01532-y.

Open Practices Statement Code for the statistical simulation reported in
this paper has been provided as a supplemental R file.

Appendix 1: Calculating the full
model-implied correlation matrix of all
manifest and latent variables in a general
structural modeling framework

ComputingΔR2 from the model of Fig. 1a may be a straight-
forward task, but not all models are so simple. SEM allows
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users to specify complex systems of relationships amongman-
ifest and latent variables, any of which may potentially act as
predictors and outcomes in a given structural regression. If the
direct matrix calculation method for computing ΔR2 is to be
useful, it must be extended to general models including both
manifest and latent variables. This requires computing the full
model-implied correlation matrix of all manifest and latent
variables.

To achieve this, take as a starting point the well-known
LISREL model equations (Jöreskog & Sörbom, 1993):

x ¼ Λxξþ δ; y ¼ Λyηþ ϵ; and

η ¼ Βηþ Γξþ ζ;

ð10Þ

where x is a (q × 1) vector of manifest indicators correspond-
ing to the exogenous latent factors, y is a (p × 1) vector of
manifest indicators corresponding to the endogenous latent
factors, ξ is an (n × 1) vector of exogenous latent factors, η
is an (m × 1) vector of endogenous latent factors, δ and ϵ
respresent unique factors (measurement residuals), and ζ rep-
resents disturbances (regression residuals) in the structural re-
gression portion of the model. As usual,Λx and Λy are factor
loading matrices, and Β and Γ are matrices of structural re-
gression coefficients.

Perhaps the simplest way to obtain the covariances among
all variables – manifest and latent – in this model would be to
position the various LISREL matrices within McArdle’s gen-
eral reticular action model (RAM; see McArdle, 2005;
McArdle & McDonald, 1984) framework. In the RAM alge-
bra, all manifest and latent variables are stacked in a vector, v,
all asymmetric, unidirectional relationships between manifest
and latent variables in the model are contained in the matrixA,
all symmetric, bidirectional relationships (variances and co-
variances represented by two-headed arrows in the path dia-
gram) are contained in the matrix S, and all unique residuals
are stacked in a vector u. The fundamental linear equation of
the RAM model is:

v ¼ Avþ u: ð11Þ

Following a result from McArdle (2005), let j= q+ p, k= n+
m, and r= j+ k, and define the vectors v and u as v′= [x′ y′ ξ′ η′]
and u

0¼ δ
0

ϵ
0

ξ
0

ζ
0� 	
. Then, the (r× r) matrices A and S

may be written in terms of the quantities defined in (1) as:

A ¼
0 0 Λx 0
0 0 0 Λy

0 0 0 0
0 0 Γ Β

2
664

3
775; and

S ¼
Θδ 0 0 0
0 Θϵ 0 0
0 0 Φ 0
0 0 0 Ψ

2
664

3
775;

ð12Þ

respectively, where Θδ and Θϵ are variance-covariance matrices
of the unique factors δ and ϵ,Φ is the variance-covariance matrix
of the exogenous factors, ξ, and where Ψ is the variance-
covariance matrix of the disturbances, ζ. Then, following
McArdle (2005), it is possible to define the inverse:

I−Að Þ−1 ¼
I 0 Λx 0
0 I Λy I−Βð Þ−1Γ Λy I−Βð Þ−1
0 0 0 0
0 0 I−Βð Þ−1Γ I−Βð Þ−1

2
664

3
775: ð13Þ

The full model-implied covariance matrix of all manifest

and latent variables, bΣFull, may then be defined as:

bΣFull ¼ I−Að Þ−1S I−Að Þ−1
0
¼

Σxx Σxy Σxξ Σxη

Σyx Σyy Σyξ Σyη

Σξx Σξy Σξξ Σξη

Σηx Σηy Σηξ Σηη

2
664

3
775;
ð14Þ

where:

Σξξ ¼ Φ;

Σηη ¼ I−Βð Þ−1 ΓΦΓ
0þΨ


 �
I−Βð Þ−1

0
;

Σηξ ¼ Σ
0
ξη ¼ I−Βð Þ−1ΓΦ;

Σxx ¼ ΛxΦΛ
0
x þΘδ;

Σyx ¼ Σ
0
xy ¼ Λy I−Βð Þ−1ΓΦΛ

0
x

Σyy ¼ ΛyΣηηΛ
0
y þΘϵ;

Σξx ¼ Σ
0
xξ ¼ ΦΛ

0
x;

Σηx ¼ Σ
0
xη ¼ I−Βð Þ−1ΓΦ;

Σξy ¼ Σ
0
yξ ¼ ΦΓ

0
I−Βð Þ−1

0
Λ

0
y; and

Σηy ¼ Σ
0
yη ¼ ΣηηΛ

0
y:

ð15Þ

To obtain the full model-implied correlation matrix, bRFull,
define a diagonal matrix D−1 with the main diagonal contain-
ing the reciprocals of the square roots of the diagonal entries of

bΣFull, that is: diag D−1� 
 ¼ diag bΣFull


 �−1=2
. Then, bRFull can

be obtained by pre- and post-multiplying bΣFull by D−1 as:

bRFull ¼ D−1 bΣFullD
−1 ¼

bRxx bRxy bRxξ bRxηbRyx bRyy bRyξ bRyηbRξx bRξy bRξξ bRξηbRηx bRηy bRηξ bRηη

2
66664

3
77775; ð16Þ

where bRxx is defined here as the model-implied correlation
matrix of the x measurement model indicators, in contrast to
Rxx defined in Eqs. (3) and (4).

It is worth noting that partitioned matrix bΣFull can either be
calculated directly via the RAM equations of (12)–(14) or
built up from its constituent sub-matrices calculated using
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the LISREL expectations defined in (15). It is also worth
noting that Eqs. (12)–(16) can be rewritten to accommodate
various other parameterizations of SEM. For example, to ob-
tain the all-Y (No X) LISRELmodel for continuous outcomes
(Jöreskog& Sörbom, 1993) implemented behind the scenes in
the lavaan package (Rosseel, 2012) and in special cases of the
Mplus model for continuous y* variables (see B. Muthén,
2004 pp. 13–14), simply omit all matrix partitions relating to
the exogenous latent variables, ξ, their associated structural
and measurement model parameter matrices, and their mea-
sured indicators, x.

The calculations employed by rsquareCalc() mirror those
described in this appendix. Conveniently, the full model-
implied correlation matrix may be extracted from any lavaan
model object via the argument what = “cor.all” in the
lavInspect() function, rendering the remaining calculations
quite straightforward.

Appendix 2: rsquareCalc() function

This function calculatesΔR2 orΔR2
Adj from a single model fit

in lavaan, specified in the model argument, using the direct
matrix calculation method. The y argument is a character
string specifying the name of the structural outcome variable
of interest. The x argument is a vector of one or more character
strings specifying the name(s) of the target predictor(s) of
interest to be omitted from the reduced model when comput-

ing R2
Reduced . The adj argument defaults to FALSE. If set to

TRUE, the function will calculate ΔR2
Adj. The effN argument

defaults to FALSE. If set to TRUE, and if adj = TRUE, the

function will calculateΔR2
Adj using the effective N. The silent

argument defaults to TRUE. If set to FALSE, no output will
be printed (this option is used in conjunction with
rsquareCalc.Boot(), described in Appendix 4).
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Appendix 3: rsquareCalcMG() function

This function takes the same arguments as rsquareCalc()
but extends the function to calculate ΔR2 from multiple
group (MG) SEMs. If a single-group model is provided in
the model argument, the function returns the same output
as rsquareCalc() with adj = FALSE. However, this func-
tion relies on lavaan’s internal structure for the functions
l a v I n s p e c t ( f i t , w h a t = “ c o r . a l l ” ) a n d
parameterEstimates(fit, rsquare = TRUE), as currently im-
plemented in lavaan version 0.6-5 at the time of this

writing. If lavaan’s internal storage methods for these
functions are changed in any future release, the function
may no longer work as intended. For this reason, the
standalone function rsquareCalc() will likely be more sta-
ble, as it relies on aspects of the parameterEstimates()
function that are less idiosyncratic and less likely to be
updated in future package releases. Note also that this
function presumes that the target structural regression(s)
from the full model are estimated in all groups in the
multiple group analysis (though this parameter may be
constrained to equality across groups).
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Appendix 4: rsquareCalc.Boot() function

This function calculates bootstrap standard errors and CIs

for ΔR2 or ΔR2
Adj, using the direct matrix calculation meth-

od. As noted in the comments in the body of the function,
the code used for bootstrap CI construction is adapted from
the code used in lavaan’s parameterEstimates() function.
T h e r e f o r e , t h e b o o t s t r a p C I s r e t u r n e d b y
rsquareCalc.Boot() should mirror those that would be ob-
tained if the user requests bootstrap CIs for ΔR2 using
Preacher’s (2006) or de Jong’s (1999) methods. The func-
tion returns the estimate of ΔR2 or ΔR2

Adj along with the

lower and upper bounds of the bootstrap CI (defaults to
percentile bootstrap but bias-corrected CI may be request-
ed) and the number of the analyses performed on the boot-
strap resamples that successfully converged. By default,
convergence means analyses that converged and did not
produce inadmissible solutions (but see the postcheck argu-
ment, described below).

Because bootstrapping involves resampling from the raw
data file and computing estimates from a statistical model, the
first arguments in the function are modelSyn – the lavaan
model syntax to be used in running the model – and Data –
indicating the data frame to be used in fitting the model. The Y
argument is a character string specifying the name of the struc-
tural outcome variable of interest. The X argument is a vector
of one or more character strings specifying the name(s) of the
target predictor(s) of interest to be omitted from the reduced

model when computing R2
Reduced . The nboot argument sets the

number of bootstrap samples, B, with B = 1000 by default (the
same default as lavaan). FUN indicates the function from the
lavaan package to be used in fitting the model (defaults to
sem()). The miss argument defaults to FALSE. If set to
TRUE, the model is fit with arguments missing = “fiml” and
fixed.x = FALSE. The adj argument defaults to FALSE. If set
to TRUE, the function will calculate ΔR2

Adj. The effN argu-

ment defaults to FALSE. If set to TRUE, and if adj = TRUE,
the function will calculate ΔR2

Adj using the effective N. The
postcheck argument defaults to TRUE, indicating that esti-
mates from analyses of bootstrap samples that produce inad-
missible solutions or Heywood cases are automatically
discarded (treated as NA). The seed argument allows the user
to supply an option seed for the pseudo-random number gen-
erator used to take the bootstrap resamples, thereby ensuring a
reproducible result. The parallel argument defaults to FALSE.
If set to TRUE, parallel processing is initiated using the snow-
fall package (Knaus et al., 2009). Note that the rlecuyer pack-
age will also need to be installed to use this option (Sevcikova
& Rossini, 2019). ncpus defaults to 2, indicating that two
processors will be used for parallel processing if parallel =
TRUE. conflevel indicates the confidence level desired for
the CI (default is .95 for a 95% CI). The argument bc defaults
to FALSE. If set to TRUE, bias-corrected bootstrapping will
be performed instead of percentile bootstrapping. The argu-
ment… indicates additional arguments to be passed to FUN.
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